Строение белковой молекулы
Молекула белков имеет вид длинных цепей, которые состоят из 50-1500 аминокислот, соединенных прочной ковалентной азот-углеродной связью, называемой пептидной связью (– СО – NH – ), а образовавшееся соединение называется пептидом.
H O
׀ ׀ //
N———C———C———N———C———C
/ ׀ ׀׀ ׀ ׀
H H H OH
свободная пептидная свободная
аминогруппа связь карбоксильная группа
Из 2х аминокислот образуется дипептид (димер); из 3х аминокислот – трипептид(триммер); из многих – полипептид (полимер).
Кроме пептидной связи известна еще дисульфидная связь, которая формируется при взаимодействии двух остатков аминокислоты цистеина. (– S – S –)
Поскольку в аминокислотах одновременно присутствуют и (основная группа) и COOH (кислая группа), они относятся к амфотерным соединениям.
Выделяют 4 уровня пространственной организации молекулы белков.
Первичная структура белка– полипептидная цепочка с определенной последовательностью аминокислот («линейная цепочка»)
Первичная структура белка уникальна и определяет его пространственную организацию, свойства и функции в клетке. Пример: белок рибонуклеаза, выполняющий ферментативную функцию.
Вторичная структура белка определяется укладкой цепочки аминокислот в определенные структуры, называемые α- спиралью и β- слоем (гармошка).
Вторичная структура формируется за счет: ионных и электростатических связей между положительными и отрицательными ионами; и водородных связей, которые образуются между двумя сильно отрицательными атомами – С и О.
Пример: кератин – входит в состав ногтей и волос, коллаген также фермент в формуле закрученной спирали.
Третичная структура образуется при сворачивании полипептидной цепи с элементами вторичной структуры в клубок (глобулу) и поддерживается за счет ионных, гидрофильных и ковалентных (дисульфидных) связей между различными остатками аминокислот.
Гидрофильные связи – это связи образующиеся за счет дисперсионных взаимодействий полярных боковых цепей.
Гидрофобные связи – слабые связи между неполярными боковыми цепями, возникающие в результате взаимного отталкивания молекулярного растворителя.
Биологическую активность белок проявляет только в виде третичной структуры, поэтому замена даже одной аминокислоты в цепочке может привести к изменению конфигурации белка и к снижению или утрате его биологический активности.
Четвертичная структура белка – объединение 2х, 3х, 4х и более молекул с третичной организацией в один комплекс.
Пример: гемоглобин состоит из 4х субъед. и небелковой части – гема (железа).
Замена одной из 300 аминокислот, находящихся в молекуле гемоглобина – глутаминовой кислоты – валином, изменяет свойства гемоглобина. Люди с такими изменениями страдают наследственными заболеваниями – серповидноклеточной анемией.
Все цепи в четвертичной структуре удерживаются слабыми связями типа водородных и дисульфидных мостиков.
Денатурация – утрата белковой молекулой своей структурной организации.
Денатурация может происходить в результате различных химических и физических факторов (обработка спиртом, ацетоном, кислотами, повышение температуры, облучение, высокое Д и т.д.)
Денатурация может быть:
ü обратимой –нарушается четвертичная, третичная и вторичная структура белка, но первичная НЕ нарушается, и при возвращении нормальных условий вожможна ренатурация – восстановление нормальной конфигурации белковой молекулы.
ü необратимой – при нарушении первичной структуры.
Строение и функции белков
Белки (протеины) составляют 50% от сухой массы живых организмов.
Белки состоят из аминокислот. У каждой аминокислоты есть аминогруппа и кислотная (карбоксильная) группа, при взаимодействии которых получается пептидная связь, поэтому белки еще называют полипептидами.
Структуры белка
Первичная – цепочка из аминокислот, связанных пептидной связью (сильной, ковалентной). Чередуя 20 аминокислот в разном порядке, можно получать миллионы разных белков.
Если поменять в цепочке хотя бы одну аминокислоту, строение и функции белка изменятся, поэтому первичная структура считается самой главной в белке.
Вторичная – спираль. Удерживается водородными связями (слабыми).
Третичная – глобула (шарик). Четыре типа связей: дисульфидная (серный мостик) сильная, остальные три (ионные, гидрофобные, водородные) – слабые.
Форма глобулы у каждого белка своя, от нее зависят функции. При денатурации форма глобулы меняется, и это сказывается на работе белка.
Четвертичная – имеется не у всех белков. Состоит из нескольких глобул, соединенных между собой теми же связями, что и в третичной структуре. (Например, гемоглобин.)
Денатурация
Это изменение формы глобулы белка, вызванное внешними воздействиями (температура, кислотность, соленость, присоединение других веществ и т.п.)
- Если воздействия на белок слабые (изменение температуры на 1°), то происходит обратимая денатурация.
- Если воздействие сильное (100°), то денатурация необратимая.
При этом разрушаются все структуры, кроме первичной.
Функции белков
Их очень много, например:
- Ферментативная (каталитическая) – белки-ферменты ускоряют химические реакции за счет того, что активный центр фермента подходит к веществу по форме, как ключ к замку (комплементарность, специфичность).
- Строительная (структурная) – клетка, если не считать воду, состоит в основном из белков.
- Защитная – антитела борются с возбудителями болезней (иммунитет).
Четвертичная структура белков: количество и типы субъединиц
Заимодействия между субъединицами, стабилизирующие четвертичную структуру. Функциональное значение четвертичной структуры белков
Четвертичная структура − это надмолекулярное образование, состоящее из двух и более полипептидных цепей, связанных между собой нековалентно, а водородными связями, электростатическими, диполь-дипольные и гидрофобными взаимодействиями между остатками аминокислот, находящихся на поверхности.
Примером может служить молекула гемоглобина, вирус табачной мозаики (2130 субъединиц).
Каждый из белков-участников третичной структуры при образовании четвертичной структуры называют субъединицей или протомером. Образовавшуюся молекулу называют олигомером, или мультимером. Олигомерные белки чаще построены из четного количества протомеров с одинаковыми или разными молекулярными массами.
В образовании четвертичной структуры белка принимают участие те же связи, что и при образовании третичной структуры, за исключением ковалентных.
Объединение белковых молекул третичной структуры без появления новых биологических свойств называют агрегированным состоянием. Как четвертичная структура, так и агрегированное состояние могут быть обратимо разрушены с применением детергентов, в частности, додецилсульфата натрия или неионных детергентов типа тритона.
Очень часто для разрушения четвертичной структуры исследуемый белок нагревают при 100°С в присутствии 1%-ного 2-меркаптоэтанола и 2%-ного додецилсульфата натрия.
Четвертичная структура молекул белка образуется при взаимодействии :
В таких условиях восстанавливаются -S-S-связи между остатками Cys, которые в некоторых случаях удерживают субъединицы четвертичной структуры.
Субъединицы, образующие четвертичную структуру белка, могут быть различными как по строению, так и по функциональным свойствам (гетеромеры). Это позволяет объединить в одной структуре несколько взаимосвязанных функций, создать полифункциональную молекулу.
Например, в протеинкиназе, стехиометрия червертичной структуры которой отвечает формуле С2R2, субъединица С ответственна за ферментативную активность, осуществляя перенос фосфатного остатка от АТР на белок; субъединица R является регуляторной.
В отсутствие циклического АМР последняя связана с С-субъединицей и ингибирует ее. При образовании комплекса с сАМР четвертичная структура распадается и С-субъединицы оказываются способными фосфорилировать белковые субстраты.
В гомомерных белках субъединицы одинаковы.
Подавляющая часть белков, имеющих четвертичную структуру, приходится на димеры, тетрамеры и гексамеры, последние встречаются у белков с молекулярной массой, большей 100 кДа.
Характерной особенностью белков с четвертичной структурой является их способность к самосборке.
Взаимодействие протомеров осуществляется с высокой специфичностью, благодаря образованию десятка слабых связей между контактными поверхностями субъединиц, поэтому ошибки при формировании четвертичной структуры белков исключены.
Практически все белки-ферменты имеют четвертичную структуру и состоят, как правило, из четного числа протомеров (двух, четырех, шести, восьми).
Четвертичная структура белка подразумевает такое объединение белков третичной структуры, при котором появляются новые биологические свойства, не характерные для белка в третичной структуре. В частности, такие эффекты, как кооперативный и аллостерический, характерны лишь для белков с четвертичной структурой.
Четвертичная структура – последний уровень в организации белковой молекулы, причем не обязательный – до половины известных белков ее не имеют.
Физико-химические свойства белков: ионизация, гидратация, растворимость
Высшим уровнем организации белков является четвертичная структура. Под четвертичной структурой белка подразумевают способ укладки в пространстве отдельных полипептидных цепей, обладающих одинаковой (или разной) первичной, вторичной или третичной структурой, и формирование единого в структурном и функциональном отношениях макромолекулярного образования.
Каждая отдельно взятая полипептидная цепь, получившая название протомера (мономера или субъединицы), чаще всего не обладает биологической активностью. Образовавшуюся молекулу принято называть олигомером (мультимером). Олигомерные белки чаще построены из четного числа протомеров (от 2 до 4, реже от 6 до 8) с одинаковыми или разными молекулярными массами.
Основными силами, стабилизирующими четвертичную структуру, являются нековалентные связи между контактными площадками протомеров, которые взаимодействуют друг с другом по типу комплементарности.
При четвертичном уровне организации белки сохраняют основную конфигурацию третичной структуры (глобулярную или фибриллярную).
Например, гемоглобин — белок, имеющий четвертичную структуру, состоит из четырех субъединиц. Каждая из субъединиц — глобулярный белок и в целом гемоглобин тоже имеет глобулярную конфигурацию.
Белки волос и шерсти — кератины, относящиеся по третичной структуре к фибриллярным белкам, имеют фибриллярную конформацию и четвертичную структуру.
Стабилизация четвертичной структуры белков. Все белки, у которых обнаружена четвертичная структура, выделены в виде индивидуальных макромолекул, не распадающихся на субъединицы. Контакты между поверхностями субъединиц возможны только за счет полярных групп аминокислотных остатков, поскольку при формировании третичной структуры каждой из полипептидных цепей боковые радикалы неполярных аминокислот (составляющих большую часть всех протеиногенных аминокислот) спрятаны внутри субъединицы.
Между их полярными группами образуются многочисленные ионные (солевые), водородные, а в некоторых случаях и дисульфидные связи, которые прочно удерживают субъединицы в виде организованного комплекса. Применение веществ, разрывающих водородные связи, или веществ, восстанавливающих дисульфидные мостики, вызывает дезагрегацию протомеров и разрушение четвертичной структуры белка.
Заимодействия между субъединицами, стабилизирующие четвертичную структуру. Функциональное значение четвертичной структуры белков
Четвертичная структура − это надмолекулярное образование, состоящее из двух и более полипептидных цепей, связанных между собой нековалентно, а водородными связями, электростатическими, диполь-дипольные и гидрофобными взаимодействиями между остатками аминокислот, находящихся на поверхности.
Примером может служить молекула гемоглобина, вирус табачной мозаики (2130 субъединиц).
Каждый из белков-участников третичной структуры при образовании четвертичной структуры называют субъединицей или протомером.
Образовавшуюся молекулу называют олигомером, или мультимером. Олигомерные белки чаще построены из четного количества протомеров с одинаковыми или разными молекулярными массами. В образовании четвертичной структуры белка принимают участие те же связи, что и при образовании третичной структуры, за исключением ковалентных.
Объединение белковых молекул третичной структуры без появления новых биологических свойств называют агрегированным состоянием.
Как четвертичная структура, так и агрегированное состояние могут быть обратимо разрушены с применением детергентов, в частности, додецилсульфата натрия или неионных детергентов типа тритона. Очень часто для разрушения четвертичной структуры исследуемый белок нагревают при 100°С в присутствии 1%-ного 2-меркаптоэтанола и 2%-ного додецилсульфата натрия.
В таких условиях восстанавливаются -S-S-связи между остатками Cys, которые в некоторых случаях удерживают субъединицы четвертичной структуры.
Субъединицы, образующие четвертичную структуру белка, могут быть различными как по строению, так и по функциональным свойствам (гетеромеры). Это позволяет объединить в одной структуре несколько взаимосвязанных функций, создать полифункциональную молекулу. Например, в протеинкиназе, стехиометрия червертичной структуры которой отвечает формуле С2R2, субъединица С ответственна за ферментативную активность, осуществляя перенос фосфатного остатка от АТР на белок; субъединица R является регуляторной.
В отсутствие циклического АМР последняя связана с С-субъединицей и ингибирует ее. При образовании комплекса с сАМР четвертичная структура распадается и С-субъединицы оказываются способными фосфорилировать белковые субстраты. В гомомерных белках субъединицы одинаковы.
Подавляющая часть белков, имеющих четвертичную структуру, приходится на димеры, тетрамеры и гексамеры, последние встречаются у белков с молекулярной массой, большей 100 кДа.
Характерной особенностью белков с четвертичной структурой является их способность к самосборке.
Взаимодействие протомеров осуществляется с высокой специфичностью, благодаря образованию десятка слабых связей между контактными поверхностями субъединиц, поэтому ошибки при формировании четвертичной структуры белков исключены.
Практически все белки-ферменты имеют четвертичную структуру и состоят, как правило, из четного числа протомеров (двух, четырех, шести, восьми).
Четвертичная структура белка подразумевает такое объединение белков третичной структуры, при котором появляются новые биологические свойства, не характерные для белка в третичной структуре.
В частности, такие эффекты, как кооперативный и аллостерический, характерны лишь для белков с четвертичной структурой.
Четвертичная структура – последний уровень в организации белковой молекулы, причем не обязательный – до половины известных белков ее не имеют.