Цитозоль клетки: строение и функции

Цитоплазма клетки

Цитозоль (жидкая часть цитоплазмы) содержит органеллы, цитоскелет, включения.

Органелла (органоид) – специализированный для выполнения конкретной функции и метаболически активный элемент цитоплазмы.

К органеллам относят свободные рибосомы, гранулярную и гладкую эндоплазматическую сеть (соответственно, шероховатый и гладкий эндоплазматический ретикулум), митохондрии, комплекс Гольджи, центриоли, окаймленные пузырьки, лизосомы, пероксисомы.

Цитозоль клетки: строение и функции

Жидкая часть цитоплазмы – цитозоль – составляет около половины объема клетки. Помимо воды, в цитозоле присутствуют ионы, множество химических соединений разной природы, макромолекулы.

Ц. – не просто раствор, его физико-химическая природа сложна, а характеристики постоянной меняются. Поэтому, а также в силу сложности изучения микрокомпонентов цитозоля в их нативном состоянии постоянно присутствует опасность получения артефактов.

Тем не менее, некоторые макромолекулярные комплексы существуют реально. К ним, в частности, относятся апоптосомы – активаторы каспаз при регулируемой гибели клеток, а также протеосомы – комплексы нелизомальных протеаз, осуществляющие вместе с убиквитинами деградацию короткоживущих белков.

Цитозоль — это не просто разбавленный водный раствор; его состав весьма сложен, а консистенция приближается к гелю.

В цитозоле растворены многие ферменты и ферментные системы, а также другие белки, обеспечивающие связывание, хранение и транспорт питательных веществ, микроэлементов и кислорода.

В цитоплазме в виде растворов содержится также огромное число небольших биомолекул разных типов, к которым относятся не только строительные блоки биополимеров, такие, как аминокислоты и нуклеотиды, но и сотни небольших молекул органических соединений, так называемых метаболитов — промежуточных продуктов, образующихся при биосинтезе или распаде макромолекул и их строительных блоков.

Например, превращение поступающей из крови глюкозы в молочную кислоту в работающей скелетной мышце осуществляется в результате последовательного образования 10 промежуточных продуктов, причем только последний из них непосредственно превращается в молочную кислоту.

К третьему классу растворенных в цитозоле веществ относятся различные коферменты, а также АТР и ADP — главные компоненты системы переноса энергии в клетке.

И наконец, в цитозоле содержатся различные ионы неорганических солей.

Все составные части цитозоля поддерживаются в постоянных концентрациях и сбалансированных пропорциях благодаря функционированию систем, обеспечивающих их транспорт через плазматическую мембрану.

Цитозоль (гиалоплазма) содержит до 40 % белков клетки, тысячи ферментов, обеспечивающих синтез, распад и обмен белков, углеводов и жиров. Цитозоль выполняет роль депо, где происходит накопление гликогена, липидов, состоящих из триглицеридов или эфиров холестерина.

Липидные включения используются в клетках как источник энергии или как предшественник в синтезе стероидных гормонов, а гликоген — как донатор глюкозы. Помимо этого, в состав гиа-лоплазмы входит определенное количество осмотически активных веществ и ионов водорода, играющих важную роль в функции клеток.

Осмотическое давление цитозоля определяется содержанием основных осморегуляторов — Na+, СГ, К+, мочевины и других промежуточных продуктов обмена, т.е. органических веществ, выполняющих функцию противовеса основным осморегуляторам.

Во внутриклеточной осморегуляции участвуют также полиолы — сорбитол, синтезируемый из глюкозы при участии фермента альдозоре-дуктазы, инозитол, метиламины (окись триметиламина и бетаин), глицерофосфохолин, аминокислоты — глицин, пролин, глутамин, аспарагин и др.

Глубокие нарушения функции клеток обычно сочетаются с выраженными количественными и качественными изменениями состава не только основных осморе-гуляторов, но и полиолов рН гиалоплазмы определяется катионным составом, ионной проводимостью цитоплазматической мембраны, активностью электрогенных и неэлектрогенных насосов, активностью внутриклеточных ферментных систем; рН гиалоплазмы зависит от процессов анаэробного гликолиза, пептозного цикла и микросомального окисления.

Анаэробный гликолиз активируется при всех видах гипоксии и угнетения функции митохондрий, в результате чего происходит накопление в цитозоле пирувата и лактата. Избыточное содержание пирувата связано с чрезмерным усилением анаэробного гликолиза, торможением окислительного декарбоксилирования аминокислот и образованием ацетил-КоА.

Угнетение декарбоксилирования пирувата и недостаточное использование его через ацетил-КоА в цикле Кребса, реакциях аминирования и переаминирования ведут к избыточному накоплению лактата в гиалоплазме и возникновению внутриклеточного ацидоза.

В свою очередь избыток Н+ угнетает активность ферментов и ведет к дефициту макроэргов, что значительно нарушает функцию ряда органелл, так как большинство из них полноценно функционирует лишь при поддержании в них низкого значения рН, что обеспечивается активностью АТФ-зависимой электрогенной протонной помпы.

Нарушения метаболизма существенно отражаются на возможности проявления специфической функции клетки (сокращение, секреция, эндоцитоз и др.).

Цитозоль: что это?

Цитозоль — это часть цитоплазмы, занимающая пространство между мембранными органеллами.

Обычно на него приходится около половины общего объема клетки. В состав цитозоля входит множество ферментов промежуточного обмена и рибосомы.

Около половины всех белков, образующихся на рибосомах, остаются в цитозоле в качестве его постоянных компонентов.

Цитозоль содержит множество белковых филаментов, собранных в фибриллярный цитоскелет . Он определяет форму клетки, обеспечивает движение цитоплазмы и образует общую сеть, которая организует ферментативные реакции.

Поскольку белки составляют около 20% массы цитозоля, правильнее будет представлять его себе как высокоорганизованный гель, а не как раствор ферментов.

Исследования скорости диффузии, однако показывают, что малые молекулы и некоторые небольшие белки диффундируют в цитозоле почти с той же скоростью, что и в воде.

С другой стороны большие частицы, такие, как транспортные пузырьки и органеллы , движутся очень медленно, отчасти потому, что часто сталкиваются с компонентами цитоскелета.

Чтобы они передвигались с приемлемой скоростью, специальные белковые «моторы» гидролизуют AТР и используют освобождающуюся при этом энергию для переноса крупных частиц вдоль микротрубочек или актиновых филаментов .

Общий химический состав цитоплазмы

Все содержимое клетки, за исключением ядра и клеточной стенки, называется цитоплазмой.

В жидкой, бесструктурной фазе цитоплазмы (м а т р и к с е) находятся рибосомы, мембранные системы, митохондрии, пластиды и другие структуры, а также запасные питательные вещества.

Цитоплазма обладает чрезвычайно сложной, тонкой структурой (слоистая, гранулярная).

С помощью электронного микроскопа раскрыты многие интересные детали строения клетки.

Внешний липопротеидный слой протопласта бактерий, обладающий особыми физическими и химическими свойствами, называется цитоплазмат и ческой мембраной.

Внутри цитоплазмы находятся все жизненно важные структуры и органеллы.

Цитоплазматическая мембрана выполняет очень важную роль — регулирует поступление веществ в клетку и выделение наружу продуктов обмена.

Через мембрану питательные вещества могут поступать в клетку в результате активного биохимического процесса с участием ферментов.

Кроме того, в мембране происходит синтез некоторых составных частей клетки, в основном компонентов клеточной стенки и капсулы. Наконец, в цитоплазматической мембране находятся важнейшие ферменты (биологические катализаторы).

Упорядоченное расположение ферментов на мембранах позволяет регулировать их активность и предотвращать разрушение одних ферментов другими.

С мембраной связаны рибосомы — структурные частицы, на которых синтезируется белок. Мембрана состоит из липопротеидов. Она достаточно прочна и может обеспечить временное существование клетки без оболочки. Цитоплазматическая мембрана составляет до 20% сухой массы клетки.

На электронных фотографиях тонких срезов бактерий цитоплазматическая мембрана представляется в виде непрерывного тяжа толщиной около 75А, состоящего из светлого слоя (липиды), заключенного между двумя более темными (белки).

Каждый слой имеет ширину 20—30 А. Такая мембрана называется элементарной.

Между плазматической мембраной и клеточной стенкой имеется связь в виде десмозов -мостиков.

Цитоплазматическая мембрана часто дает инвагинации — впячивания внутрь клетки. Эти впячивания образуют в цитоплазме особые мембранные структуры, названные мезосомами.

Некоторые виды мезосом представляют собой тельца, отделенные от цитоплазмы собственной мембраной. Внутри таких мембранных мешочков упакованы многочисленные пузырьки и канальцы.

Эти структуры выполняют у бактерий самые различные функции. Одни из этих структур — аналоги митохондрий. Другие выполняют функции эндо-плазматической сети или аппарата Гольджи.

Путем инвагинации цитоплазматической мембраны образуется также фотосинтезирующий аппарат бактерий. После впячивания цитоплазмы мембрана продолжает расти и образует стопки, которые по аналогии с гранулами хлоропластов растений называют стопками ти-лакоидов.

В этих мембранах, часто заполняющих собой большую часть цитоплазмы бактериальной клетки, локализуются пигменты (бактериохлорофилл, каротиноиды) и ферменты (цитохромы), осуществляющие процесс фотосинтеза.

В цитоплазме бактерий содержатся рибосомы— белок-синтезирующие частицы диаметром 200А.

В клетке их насчитывается больше тысячи. Состоят рибосомы из РНК и белка. У бактерий многие рибосомы расположены в цитоплазме свободно, некоторые из них могут быть связаны с мембранами.

Рибосомы являются центрами синтеза белка в клетке. При этом они часто соединяются между собой, образуя агрегаты, называемые полирибосомами или полисомами.

В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров.

Однако их присутствие нельзя рассматривать как какой-то постоянный признак микроорганизма, обычно оно в значительной степени связано с физическими и химическими условиями среды.

Многие цитоплазматические включения состоят из соединений, которые служат источником энергии и углерода. Эти запасные вещества образуются, когда организм снабжается достаточным количеством питательных веществ, и, наоборот, используются, когда организм попадает в условия, менее благоприятные в отношении питания.

У многих бактерий гранулы состоят из крахмала или других полисахаридов -гликогена и гранулезы.

У некоторых бактерий при выращивании на богатой сахарами среде внутри клетки встречаются капельки жира.

Другим широко распространенным типом гранулярных включений является волютин (метахроматиновые гранулы).

Эти гранулы состоят из полиметафосфата (запасное вещество, включающее остатки фосфорной кислоты).

Полиметафосфат служит источником фосфатных групп и энергии для организма. Бактерии чаще накапливают волютин в необычных условиях питания, например на среде, не содержащей серы.

В цитоплазме некоторых серных бактерий находятся капельки серы.

Помимо различных структурных компонентов, цитоплазма состоит из жидкой части — растворимой фракции.

В ней содержатся белки, различные ферменты, т-РНК, некоторые пигменты и низкомолекулярные соединения — сахара, аминокислоты.

В результате наличия в цитоплазме низкомолекулярных соединений возникает разность в осмотическом давлении клеточного содержимого и наружной среды, причем у разных микроорганизмов это давление может быть различным.

Наибольшее осмотическое давление отмечено у грамположительных бактерий — 30 атм, у грамотрицательных бактерий оно гораздо ниже — 4—8 атм.

cyber
Оцените автора
CyberLesson | Быстро освоить программирование Pascal и C++. Решение задач Pascal и C++
Добавить комментарий