- Что такое фенольные соединения?
- Группы фенольных соединений
- Роль фенольных соединений
- Фенолы как лекарственные средства
- Понятие о фенольных соединениях, распространение и роль фенольных соединений для жизнедеятельности растений
- Фенольные соединения и их характеристика и распространенность в природе
- Классификация простых фенольных соединений
Что такое фенольные соединения?
Фенольные соединения это вещества ароматической природы, которые содержат одну или несколько гидроксильных групп, связанных с атомами углерода ароматического ядра. Среди продуктов вторичного происхождения
Фенольные соединения наиболее распространены и свойственны каждому растению и даже каждой растительной клетке.
По числу OH-групп различают одноатомные (например, сам фенол), двухатомные (пирокатехин, резорцин, гидрохинон) и многоатомные (пирогаллол, флороглюцин и др.) фенольные соединения.
Фенольные соединения могут быть в виде мономеров димеров, олигомеров и полимеров, в основу классификации природных фенолов положен биогенетический принцип.
Группы фенольных соединений
В соответствии с современными представлениями о биосинтезе их можно разбить на несколько основных групп:
- соединения С6-ряда — простые фенолы;
- соединения С6 — С1-ряда — производные бензойной кислоты (фенольные кислоты);
- соединения С6 — С2-ряда — фенолоспирты и фенилуксусные кислоты;
- соединения С6 — С3-ряда — производные фенилпропана (оксикоричные кислоты и спирты, кумарины);
- соединения С6 — С3 — С6-ряда — флавоноиды и изофлавоноиды;
- соединения С6 — С3 — С3 — C6-ряда — лигнаны;
- производные антрацена;
- полимерные фенольные соединения — лигнин, танниды, меланины.
Роль фенольных соединений
Фенольные соединения — бесцветные или окрашенные с характерным запахом кристаллы или аморфные вещества, реже жидкости, хорошо растворимые в органических растворителях (спирт, эфир, хлороформ, этилацетат) или в воде. Обладая кислотными свойствами, они образуют со щелочами солеобразные продукты — феноляты. Важнейшее свойство фенольных соединений — их способность к окислению с образованием хинонных форм.
Особенно легко окисляются полифенолы в щелочной среде под действием кислорода воздуха. Фенолы способны давать окрашенные комплексы с ионами тяжелых металлов, что характерно для o-диоксипроизводных. Фенольные соединения вступают в реакции сочетания с диазониевыми соединениями. При этом образуются продукты с разнообразной окраской что часто используется в аналитической практике. Кроме общих для всех фенолов качественных реакций имеются специфические групповые реакции.
В растениях фенольные соединения играют важную роль в некоторых промежуточных этапах процесса дыхания. Участвуя в окислительно-восстановительных реакциях, они служат связующим звеном между водородом дыхательного субстрата и кислородом атмосферы. Установлено, что некоторые фенольные соединения играют важную роль в фотосинтезе в качестве кофакторов.
Они используются растениями как энергетический материал для разнообразных процессов жизнедеятельности, являются регуляторами роста, развития и репродукции, оказывая при этом как стимулирующее, так и ингибирующее воздействие. Известна антиоксидантная активность многих фенолов, они все более широко применяются в пищевой промышленности для стабилизации жиров.
Препараты на основе фенольных соединений используют в качестве антимикробных, противовоспалительных, желчегонных, диуретических, гипотензивных, тонизирующих, вяжущих и слабительных средств.
В разделе всесторонне рассматриваются закономерности и механизмы биологического действия фенольных соединений — обширной группы органических веществ, повсеместно распространенных в растительном мире. Выполняя наряду с белками, нуклеиновыми кислотами, углеводами и другими соединениями важные функции в растительных клетках и тканях, фенолы в составе пищевых продуктов, а также разнообразных лекарственных средств народной и современной медицины поступают в организм человека и оказывают заметное воздействие на работу различных органов.
Рассчитано на врачей, биологов и биохимиков.
Фенолы как лекарственные средства
Знакомство с основными проявлениями физиологической и фармакодинамической активности растительных фенолов убедительно показало, что многие из них имеют большие перспективы использования при лечении и предупреждении болезней человека.
Основные классы органических соединений: белки, нуклеиновые кислоты, углеводы, жиры, а также необходимые для жизни минеральные соли и микроэлементы изучаются глубоко и всесторонне.
Сотни тысяч страниц кропотливых наблюдений, бесчисленные эксперименты, надежды и разочарования тысяч исследователей, споры и дискуссии, ошибки и открытия — вот что скрыто за лаконичными строками учебников по биохимии.
Белки, состоящие из углерода, водорода, кислорода, азота и серы, действительно выполняют важнейшие жизненные функции. Они образуют вместе с жироподобными веществами (липидами) биологические мембраны — основные структуры, из которых построены клетки.
Белки-ферменты — основные двигатели, катализаторы обмена веществ — важнейшего жизненного процесса.
Белки-гормоны — это средства регулирования и управления в машине жизни. Есть в организме белки сократительные, они работают в скелетных мышцах, осуществляют движение ворсинок, продвижение пищевого комка по пищеварительному тракту; белки транспортные, они переносят на поверхности своих огромных молекул многие жизненно важные вещества; белки-антитела — крошечные защитники нашего внутреннего мира от посягательств невидимых врагов — бактерий и вирусов.
Нет такой формы жизнедеятельности, такого биологического процесса, в котором белки не играли бы первостепенную роль.
Нуклеиновые кислоты, обнаруженные впервые в составе клеточного ядра, стали известны позже белков, а их назначение в организме установлено в полной мере лишь в последние десятилетия.
Оно теснейшим образом связано с ролью белков. Крупные молекулы нуклеиновых кислот (самые большие из них состоят из сотен тысяч и даже миллионов атомов углерода, водорода, кислорода и азота) хранят в своих длинных нитях, в последовательности своих атомных группировок наследственную память клеток, информацию о структуре и производстве белков.
Углеводы и жиры устроены значительно проще, и роль их в организме менее разнообразна.
Сгорая в тканях в процессе медленного биологического окисления, они отдают свою энергию на поддержание температуры живого тела, на осуществление процессов биосинтеза нужных ему органических соединений. Жиры и жироподобные вещества входят вместе с белками в состав биологических мембран, на поверхности которых протекают все важнейшие жизненные процессы.
Углеводы (они названы так потому, что построены из углерода, водорода и кислорода, причем два последних элемента содержатся в них в том же соотношении, что и в воде, 2:1), особенно крупные молекулы полисахаридов, играют роль энергетического запаса (крахмал, гликоген).
Некоторые из них, например целлюлоза, входят в состав оболочки растительных клеток, образуют волокна, служат важным опорным материалом в тканях растений.
Строение и жизненная роль витаминов, само их существование стали известны лишь в XX в. Потребность в них невелика, но они необходимы: при их отсутствии или недостатке человек тяжело заболевает и может даже погибнуть от цинги или пеллагры, бери-бери или рахита.
Поступая в организм с пищей, витамины обязательно присутствуют в жидкостях тела неизменными или подвергшись обменной активации. Например, витамин B1 превращается в организме в кокарбоксилазу (дифосфат тиамина), обладающую максимальной активностью.
Водорастворимые витамины В1 В2, В6, В12, РР, Н, фолиевая (Вс) и пантотеновая (В3) кислоты играют в организме роль коферментов. Это своего рода набор стандартных инструментов, с помощью которых ферментные белки выполняют свои каталитические функции: разрезают или соединяют молекулы, переносят группы атомов от молекул одного вещества к другому, ускоряют течение определенных обменных реакций.
Жирорастворимые витамины (A, D, Е, К) входят в состав биологических мембран — основного структурного элемента клеток.
Состоят мембраны из двойного слоя липидных (жироподобных) молекул, липидного «моря», в котором «плавают», подобно айсбергам, белковые частицы. Мембраны разделяют клетку на отсеки, выполняющие разные функции; осуществляют перенос молекул, ионов, электрических зарядов, основные реакции обмена веществ. Жирорастворимые витамины стабилизируют структуру мембран, защищают их от окислительного разрушения, обеспечивают нормальную работу мембранных ферментов.
Особняком стоит витамин С; он растворим в жидкостях организма, но коферментной функцией, видимо, не обладает.
Как и жирорастворимые витамины, он обладает антиокислительной активностью, но не входит в состав мембран, а в составе биологических жидкостей организма омывает их поверхность.
К середине XX в. пора великих открытий в области изучения химического состава и строения органических веществ, казалось, миновала.
Биохимики устремились в погоню за микроэлементами — веществами, присутствующими в живых тканях в исчезающе малых количествах, изучая их роль как кофакторов ферментативного катализа, ускорителей или замедлителей реакций обмена веществ.
Но есть, оказывается, большой и разнообразный класс органических соединений, биологическая роль которых далеко еще не выяснена. Это фенольные соединения. О них-то и пойдет речь в книге.
Их много, этих веществ. Они встречаются в каждом растении, в каждой клетке их тела, в корнях и листьях, в плодах и коре — везде, где их ищут ученые.
Из растений выделено несколько тысяч фенолов, и список этот продолжает расти. На долю фенольных соединений приходится до 2—3% массы органического вещества растений, а в некоторых случаях — до 10% и даже более. Конечно, такие распространенные и многочисленные органические вещества должны выполнять какие-то важные, необходимые жизненные функции.
Нельзя сказать, что о роли фенольных соединений растений ничего не известно. Исследования в этой области ведутся более 100 лет, и в последние десятилетия сделано особенно много.
Но очень скоро выяснилось странное обстоятельство. Белки и нуклеиновые кислоты, углеводы и липиды содержатся в тканях как растений, так и животных, содержатся примерно в одинаковых или близких соотношениях.
Они построены по единому плану, состоят из одних и тех же исходных элементов (аминокислот, нуклеотидов, жирных кислот, моносахаридов). В пищеварительном тракте травоядных растительная пища расщепляется на такие универсальные простые компоненты, входящие в состав собственных органических соединений этих животных, а затем и плотоядных.
Причем удается проследить судьбу одних и тех же веществ на протяжении всей биологической цепи, от растений до животных и человека, и функции этих веществ на разных участках цепи у разных видов, классов и типов организмов оказываются примерно одинаковыми и даже аналогичными.
Совершенно иначе обстоит дело с фенольными соединениями.
С их обилием и разнообразием в растительном мире резко контрастирует присутствие в тканях животных и человека лишь немногочисленных представителей фенольного «царства», содержащихся к тому же в очень малых, даже ничтожных, количествах.
И несмотря на наличие близкого сходства химической структуры растительных и животных фенолов, никому еще не удалось совершенно уверенно и надежно доказать, что между ними существует такая же преемственная связь, как между растительными и животными белками или углеводами.
Попытки проследить (с помощью метода меченых атомов или других современных научных методик) за судьбой фенольных соединений растительной пищи в организме животных и человека дали один и тот же результат: основная масса растительных фенолов сгорает в теле животных до углекислоты и воды, подобно тому как ведут себя углеводы или жиры.
Но является ли роль углеводов чисто энергетической или какая-то их часть все же используется при биосинтезе животных фенолов?
Окончательного ответа на этот вопрос еще нет.
Какова же функция растительных фенолов в организме животных и человека, куда они постоянно поступают с пищей?
Попытаемся ответить на этот вопрос на страницах раздела.
Понятие о фенольных соединениях, распространение и роль фенольных соединений для жизнедеятельности растений
Растения способны синтезировать и накапливать огромное количество соединений фенольной природы.
Фенолы – это ароматические соединения, содержащие в своей молекуле бензольное ядро с одной или несколькими гидроксильными группами.
Соединения, содержащие несколько ароматических колец, с одной или несколькими гидроксильными группами называются полифенолами.
Они встречаются в различных частях многих растений – в покровных тканях в плодах, проростках, листьях, цветках и — придают им окраску и аромат пигменты фенольной природы — антоцианы; большинство полифенолов — активные метаболиты клеточного обмена,играют важную роль в различных физиологических процессах, таких как, фотосинтез, дыхание, рост, устойчивость растений к инфекционным болезням, рост и репродукция;защищают растения от патогенных микроорганизмов и грибковых заболеваний.
Распространение.
Из фенолокислот часто встречается галловая кислота и значительно реже — салициловая (фиалка трехцветная). Фенолокислоты и их гликозиды содержатся в родиоле розовой.
К группе фенолов с одним ароматическим кольцом относятся простые фенолы, фенолокислоты, фенолоспирты, оксикоричные кислоты.
Фенологликозидами называется группа гликозидов, агликоном которых являются простые фенолы, оказывающие дезинфицирующее действие на дыхательные пути, почки и мочевые пути.
Фенологликозиды в природе распространены довольно широко.
Встречаются в семействах ивовых, брусничных, камнеломковых, толстянковых и др., имеются в листьях толокнянки и брусники.
Природные фенолы часто проявляют высокую биологическую активность.
Препараты на основе фенольных соединений широко используются в качестве — противомикробных, противовоспалительных, кровоостанавливающих, желчегонных, диуретических, гипотензивных, тонизирующих, вяжущих и слабительных средств.
Фенольные соединения имеют универсальное распространение в растительном мире.
Они свойственны каждому растению и даже каждой растительной клетке. В настоящее время известно свыше двух тысяч природных фенольных соединений. На долю веществ этой группы приходится до 2-3% массы органического вещества растений, а в некоторых случаях — до 10% и более.
Фенольные соединения обнаружены как в низших; грибах, мхах, лишайниках, водорослях, так и в высших споровых (папоротниках, хвощах) и цветковых растениях. У высших растений — в листьях, цветках, плодах, подземных органах.
Синтез фенольных соединений происходит только в растениях, животные потребляют фенольные соединения в готовом виде и могут их только преобразовывать
В растениях фенольные соединения играют важную роль.
Они являются обязательными участниками всех метаболических процессов: дыхания, фотосинтеза, гликолиза, фосфорилирования.
Исследованиями русского ученого биохимика В.И.Палладина (1912) установлено и подтверждено современными исследованиями, что фенольные соединения — «дыхательные хромогены», т.е. они учавствуют в процессе клеточного дыхания.
Фенольные соединения и их характеристика и распространенность в природе
Фенольные соединения выступают в качестве переносчиков водорода на конечных этапах процесса дыхания, а затем вновь окисляются специфическими ферментами оксидазами.
Фенольные соединения являются регуляторами роста, развития, и репродукции растений. При этом, оказывают как стимулирующее, так и ингибирующее (замедляющее) действие.
Фенольные соединения используются растениями как энергетический материал, выполняют структурную, опорную и защитную функции (повышает устойчивость растений к грибковым заболеваниям, обладают антибиотическим и противовирусным действием).
Классификация простых фенольных соединений
В зависимости от характера заместителей в бензольном кольце фенологликозиды можно разделить на 3 группы:
1 группа: С6 — ряда
1) одноатомные фенолы
простые фенолы (монофенолы) – моногидроксипроизводные — встречаются в растениях нечасто.
Сам фенол обнаружен в иглах и шишках Pinus silvestris, эфирных маслах листьев Nicotiana tabacum, Ribes nigrum, лишайниках.
2) Дигидроксипроизводные – двухатомные фенолы (дифенолы)
а) Пирокатехин (1,2-диоксибензол) найден в листьях эфедры, чешуе лука, плодах грейпфрута.
б) Из диоксибензолов наиболее распространен гидрохинон (1,4-диоксибензол).
Его гликозид арбутин, содержащийся в представителях семейств: Ericaceae (листьях толокнянки), Vacciniaceae (брусники), Saxifragaceae (бадана).
Наряду с арбутином в этих растениях присутствует метиларбутин.
Агликоном его является метилгидрохинон
Арбутин метиларбутин
в) Резорцин (1,3-диоксибензол) (или м-диоксибензол) содержится в различных естественных смолах, таннинах.
Трехатомные фенолы (трифенолы).
Представителем триоксибензолов является флороглюцин (1,3,5-триоксибензол), в свободном виде он обнаружен в шишках секвойи и чешуе лука, а в виде гликозида флорина – в околоплоднике плодов разных видов цитрусов.
Более сложные соединения — флороглюциды (гликозиды флороглюцина), они могут содержать одно кольцо флороглюцина (аспидинол) или представляют собой димеры или тримеры (кислоты флаваспидиновая и филиксовая).
Значительные количества флороглюцидов накапливается в корневищах мужского папоротника.
аспидинол
2 группа:
1) С6 – С1 – ряда — Фенолкарбоновые кислоты
Фенолокислоты широко распространены в растениях, но не являются в них основными биологически активными веществами, это типичные сопутствующие вещества, участвующие в лечебном эффекте суммарных препаратов.
Широко распространены в растениях семейств: бобовые, сумаховые, фиалковые, брусничные.
Широко распространена n-гидроксибензойная кислота
Например, пирокатеховая кислота характерна для покрытосеменных.
Галловая кислота может накапливаться в значительных количествах (в листьях толокнянки)
Салициловая кислота встречается сравнительно редко, агликон гликозида салициловой кислоты содержит карбоксильную группу:
Ее метиловые эфиры входят в состав эфирных масел растений семейств фиалковых, березовых, ивовых (трава фиалки полевой, плоды малины, обладает противовоспалительным и жаропонижающим действием).
С6- С2 – ряда — Фенолоспирты и их гликозиды содержатся в родиоле розовой
Салидрозид и салицин.
Агликоны этих гликозидов 4-оксифенилэтанол и 2-оксифенилметанол (салициловый спирт).
Наряду с фенольными гидроксилами эти агликоны имеют спиртовые гидроксильные группы, и гликозидирование их может быть по фенольным и спиртовым группам:
Салициловый спирт
Салицин Салидрозид
(2-оксифенилметанол)
Салицин получил из коры ивы французский ученый Леру в 1828 г.
Много его в листьях и побегах толокнянки, брусники, груши, бадана. Часто в растениях ему сопутствует метиларбутин.
Салидрозид впервые был выделен в 1926 г. из коры ивы, а позднее обнаружен в подземных органах родиолы розовой.
С6 – С3 – ряда — гидроксикоричные кислоты
содержатся как в свободном, так и в виде гликозидов практически в каждом растении.
Наиболее распространена кофейная кислота и ее соединения:
Коричная кислота n-кумаровая кислота кофейная кислота
Розмариновая к-та хлорогеновая к-та
Хлорогеновая кислота содержится в зеленых зернах кофе (6%), листьях табака (8%); розмариновая кислота впервые была найдена в розмарине лекарственном, но встречается и в других представителях губоцветных.
Предшественником оксикоричных кислот является фенилаланин.
Оксикоричные кислоты обладают антимикробной и антигрибковой активностью, проявляют антибиотические свойства.
Оксикоричные кислоты и их эфиры обладают направленным действием на функцию почек, печени, мочевыводящих путей. Содержатся в траве хвоща полевого, зверобоя, цветков пижмы, бессмертника песчаного.