Что такое физиология микроорганизмов
Физиология микробов — это раздел микробиологии, изучающий химический состав микробных клеток, механизмы поступления питательных веществ внутрь клетки, энергетический и конструктивный метаболизм, системы секреции веществ из бактериальной клетки, рост и размножение бактерий.
Физиология микроорганизмов изучает процессы питания, дыхания, роста, размножения, взаимодействия микробов с внешней средой, т.е. их жизнедеятельность.
Химический состав клетки
В микробной клетке содержится в среднем 80-85 % воды и 15-20 % сухих веществ. Вода в клетке находится в свободном и связанном состоянии. В свободной воде происходит растворение наиболее важных органических и минеральных веществ.
В водной среде протекают основные биохимические процессы. Связанная вода входит в состав белков, углеводов, жиров и других веществ.
В состав сухих веществ микробной клетки входят минеральные и органические вещества, основу которых составляют углерод, азот, кислород и водород. На долю минеральных (зольных) элементов приходится 3-10 %, а на долю органических — 90-97 % сухих веществ.
Важнейшей частью органического вещества микробов являются белки. Они составляют около 70-80 % сухих веществ.
В состав клетки входят простые (протеины) и сложные (протеиды) белки. Простые белки при гидролизе (химическое расщепление в воде) дают аминокислоты: триптофан, тирозин, лейцин и др. Сложные белки являются строительным материалом для клетки, а также играют большую роль в росте и размножении.
Хромопротеиды (цитохромы) являются катализаторами окислительных процессов в клетке.
В микробной клетке углеводы представлены в основном полисахаридным комплексом и продуктами их гидролиза. Углеводы входят в состав оболочки и капсул, участвуют в синтезе белков и жиров и являются основным энергетическим материалом, расходуемым в процессе дыхания.
Жиры и жироподобные вещества (липиды) входят в состав оболочки, придают клетке устойчивость при неблагоприятных условиях существования и играют роль запасных питательных веществ.
В микробной клетке содержатся витамины, микроэлементы, минеральные и другие вещества.
Нуклеиновые кислоты представлены в виде ДНК и РНК. РНК управляет синтезом белка, ДНК является передатчиком наследственных свойств.
Микроэлементы (цинк, медь, молибден и др.) участвуют в синтезе ферментных белков, активизируют жизнедеятельность микроорганизмов.
Питание микроорганизмов
Между микробной клеткой и внешней средой происходит постоянный интенсивный процесс обмена.
Поглощение питательных веществ и выделение продуктов жизнедеятельности происходит у микроорганизмов через всю поверхность полупроницаемой оболочки.
В основе механизма проникновения питательных веществ через стенку клетки лежат сложные физико-химические явления. Через полупроницаемую оболочку в тело микробов поступают вода и растворенные в ней питательные вещества. В клетке накапливается материал, необходимый для ее роста.
В тело клетки через ее оболочку не могут проникать вещества, имеющие большие размеры молекул (коллоиды, белки и др.).
Они проникают в клетку только после предварительного их расщепления ферментами, выделяемыми в питательную среду.
Для питания микроорганизмов необходимы азот и углерод. По типу усвоения углерода микробы принято делить на группы аутотрофов и гетеротрофов.
Аутотрофные микроорганизмы способны усваивать углерод непосредственно из углекислоты и не нуждаются в готовых органических соединениях. К аутотрофам относятся железобактерии, серобактерии, нитрофицирующие бактерии и др.
Гетеротрофы — микробы, которые для своего питания используют углерод из готовых органических соединений. К группе гетеротрофов относятся непатогенные (сапрофиты) и патогенные (паразиты) микробы.
Сапрофиты живут за счет использования мертвых органических субстратов. К сапрофитам относят многие виды гнилостных микробов. Паразиты — сравнительно небольшая группа микробов, способных жить и размножаться в живых тканях животных, человека, растений и вызывать инфекционные заболевания.
По характеру усвоения азота микробы подразделяются на азотфиксирующие, способные питаться атмосферным азотом; протеолитические, расщепляющие белковые вещества, пептиды и аминокислоты; нитритно-нитратные, усваивающие окисленные формы азота.
Многие микроорганизмы для своего развития, кроме углерода и азота, нуждаются в факторах роста — витаминах, которые играют роль катализаторов биохимических процессов в клетке.
Другие же виды микробов сами являются продуцентами ростовых веществ. Например, дрожжи продуцируют витамин В, биотин, пантотеновую кислоту.
Дыхание микроорганизмов
Для своей жизнедеятельности каждая микробная клетка кроме питательных веществ нуждается в энергии. Эту энергию микроорганизмы получают в процессе дыхания.
Сущность дыхания у микробов заключается в окислении сложных органических соединений до более простых веществ с выделением тепловой энергии, которая и используется микробами. В большинстве случаев микроорганизмы получают энергию путем окисления углеводов и других органических соединений. За счет полученной энергии происходит синтез сложных органических соединений в самой клетке.
По типу дыхания микроорганизмы делятся на аэробы и анаэробы.
Аэробы — микроорганизмы, которые для дыхания и получения необходимой энергии нуждаются в свободном доступе кислорода из воздуха. У этой группы микробов процесс дыхания аэробный. Анаэробы — микроорганизмы, которые получают энергию при дыхании без доступа кислорода воздуха путем расщепления питательных веществ.
Различают облигатные (строгие) и факультативные (нестрогие) анаэробы. Облигатные анаэробы проявляют свою жизнедеятельность только при отсутствии кислорода воздуха. Факультативные анаэробы могут развиваться в средах как в присутствии кислорода воздуха, так и без него.
В химизме дыхательных процессов у аэробов и анаэробов имеется много общего. Во всех случаях первым этапом дыхательных процессов является отщепление водорода от субстрата (дегидрирование) в присутствии специфических ферментов — дегидрогеназ.
Происходящие процессы носят окислительно-восстановительный характер.
Сущность окисления состоит в потере электронов окисляющимся веществом, тогда как сущность восстановления состоит в присоединении этих электронов восстанавливающимся веществом. Та или иная последовательность биохимических реакций в течение обменных процессов возможна благодаря тонким изменениям окислительно-восстановительного потенциала, под которым понимают способность вещества отдавать или получать электроны.
При аэробном типе дыхания аэробные дегидрогеназы передают отнятый от субстрата водород или непосредственно кислороду воздуха, или цитохромной системе.
Это так называемое аэробное дегидрирование, при котором происходит обычно полное окисление. При полном окислении конечными продуктами являются вода и углекислота, при этом освобождается вся энергия.
При неполном окислении происходит образование продуктов, в которых заключается значительная часть энергии.
В анаэробных условиях биохимические процессы происходят при отсутствии кислорода воздуха. Анаэробные дегидрогеназы не могут отдавать водород кислороду воздуха, а передают его другим веществам, от которых сравнительно легко отщепляется кислород.
Это так называемое анаэробное дегидрирование, при котором происходит неполное окисление субстрата.
Размножение микроорганизмов
Бактерии размножаются делением клетки. Цитоплазматическая мемрана врастает внутрь перпендикулярно оси. Образуется перегородка, которая разделяет одну клетку на две новые. Скорость размножения у различного вида бактерий различна. Например, клетка кишечной палочки делится каждые 20-30 мин, а клетка туберкулезных бактерий — через 20-24 ч.
Скорость размножения зависит от наличия питательных веществ в среде, температуры, реакции среды и других факторов.
Дрожжи размножаются простым делением, почкованием, посредством спор, а некоторые виды — слиянием двух клеток. При размножении почкованием на материнской клетке образуется небольшой бугорок — почка, которая увеличивается.
В нее из материнской клетки переходит часть цитоплазмы, ядра и других клеточных элементов, затем почка отделяется от материнской клетки.
Плесневые грибы размножаются бесполым и половым путем. При бесполом размножении у многоклеточных грибов на концах плодоносящих гиф развиваются споры (конидии).
После созревания споры осыпаются и прорастают в новые гифы. У одноклеточных плесневых грибов споры находятся внутри спорангия (мешочек). При созревания плесени спорангии лопаются и споры рассеиваются во внешнюю среду. В благоприятных условиях они прорастают и образуются новые особи.
Некоторые виды грибов размножаются путем распада мицелия на отдельные членики. При половом размножении происходит слияние двух клеток.
Дыхание микробов
Дыхание является источником энергии для живых существ.
Происходящие в микробной клетке синтетические процессы построения протоплазмы, процессы роста, размножения, движения и др. требуют притока свободной энергии, так как эти процессы эндотермичны. Поэтому в микробной клетке постоянно совершаются одновременно с процессами ассимиляции процессы диссимиляции, освобождающие энергию для ее жизнедеятельности.
Совокупность биохимических процессов, в результате которых образуется энергия, необходимая для жизнедеятельности клетки, составляет энергетический обмен.
В противоположность высшим организмам энергетический обмен у микроорганизмов имеет разнообразные формы: дыхание, брожение и др.
Дыханием называется окисление органических веществ с помощью газообразного кислорода до углекислоты и воды. Так, окисление сахара в процессе дыхания выражается уравнением С6Н12О6+6О2=6СО2+6Н2О+энергия. Это уравнение противоположно уравнению фотосинтеза 6СО2+6Н2О+энергия=C6H12О6+6O2.
В 1861 г. Луи Пастер при изучении масляно-кислого брожения установил, что возбудитель этого брожения (Вас. butyricus) нормально развивается только в отсутствие свободного кислорода, энергию он поручает за счет реакции расщепления органического субстрата. Пастер определил сущность брожения как жизнь без кислорода. Кислород воздуха не принимает участия в брожении, а органическое вещество окисляется за счет отнятия водорода, который присоединяется к продуктам распада этого же органического вещества или выделяется в газообразном состоянии.
Автотрофы получают энергию за счет окисления простых неорганических соединений: сероводорода, аммиака, водорода. Денитрифицирующие и десульфофицирующие бактерии получают энергию путем окисления соответственно нитратов и сульфатов, но они могут получать энергию и за счет окисления органических веществ.
У некоторых микробов реакция окисления кислородом не доходит до конечных продуктов — СО2 и Н2О. Такой неполный окислительный процесс наблюдается у уксуснокислых бактерий, окисляющих спирт только до уксусной кислоты, и некоторых видов плесеней, разлагающих сахар до щавелевой и лимонной кислот.
Гнилостные бактерии используют энергию, освобождающуюся при расщеплении ими белков, при этом энергия химических связей аминокислот превращается в энергию АТФ.
По отношению к кислороду микробы разделяются на две группы: аэробы, развивающиеся только при наличии кислорода в окружающей среде, и анаэробы, которые развиваются при отсутствии свободного кислорода. Кроме того, имеется еще одна промежуточная группа — факультативные анаэробы, способные жить как в аэробных, так и в анаэробных условиях. Имеются также микроаэрофилы, развивающиеся при уменьшенном количестве кислорода в среде, например бруцеллезная палочка.
Образующаяся химическая энергия только частично рассеивается в виде тепла. Большая же часть этой энергии улавливается и сохраняется в виде макроэргических связей АТФ.
Фосфатные группы связаны между собой непрочно и легко освобождают свою энергию в нужных количествах там, где она необходима для жизнедеятельности клетки. АТФ, теряя энергию, превращается в АДФ (аденозиндифосфат) и в АМФ (аденозинмонофосфат).
1. АТФ+Н2О→АДФ+Н3РО4+10000 кал
2. АДФ+Н2О→АМФ+Н3РО4+10000 кал
АТФ, АДФ, АМФ и фосфорная кислота всегда присутствуют в различных соотношениях в каждой клетке.
Реакции эти обратимы, АМФ и АДФ могут присоединять к себе фосфорную кислоту и превращаться в АТФ. Так обеспечивается более или менее постоянное количество АТФ в клетке. Запас АТФ в клетке ограничен.
Для восстановления макроэргических связей АТФ все время используется энергия расщепления углеводов и других веществ.
Долгое время считали, что процесс дыхания свойствен высшим организмам, а брожение только микроорганизмам. Затем было установлено, что они тесно связаны друг с другом. Дыхание и брожение представляют собой очень сложные комплексы сопряженных окислительно-восстановительных процессов, которые определяются тем или иным набором ферментов.
Во всех энергетических процессах в клетке можно различить три стадии.
В первой, подготовительной стадии крупные молекулы углеводов, жиров, белков распадаются на небольшие молекулы глюкозы, глицерина, жирных кислот, аминокислот. Происходит подготовка веществ к дальнейшим превращениям, здесь не происходит заметного извлечения энергии.
В следующей стадии, называемой стадией неполного окисления, образовавшиеся глюкоза, жирные кислоты и другие вещества подвергаются сложному многоступенчатому процессу. Таково неполное окисление, которое называется гликолизом или брожением.
Эта стадия анаэробная. Гликолиз представляет собой более десяти последовательных ферментативных реакций. Из глюкозы последовательно образуется десять различных промежуточных веществ (субстратов) и действует столько же специфических ферментов. Весь этот процесс идет по типу молочнокислого брожения, вызываемого молочнокислыми бактериями, и имеет много сходного со спиртовым брожением, вызываемым дрожжами.
Процесс начинает фермент гексокиназа, под влиянием которого глюкоза вступает в реакцию с АМФ и образуется гексозо-6-фосфат. Гексозо-6-фосфат под действием фермента алдолазы переходит во фруктозо-6-фосфат и т.
д. Конечным продуктом гликолиза является молочная кислота. Суммарное уравнение всего процесса выражается так: С6Н12О6=2С3H6О3.
Последней стадией процесса является полное окисление субстратов до конечных продуктов — СО2 и Н2О.
Эта стадия протекает в аэробных условиях. Следовательно, она имеется только у аэробов. В этой стадии участвуют органические кислоты, состоящие из трех углеродных атомов, почему и назвали ее циклом трикарбоновых кислот (Крепс, 1953).
Цикл начинается с того, что две молекулы молочной кислоты окисляются и дают две молекулы пировиноградной кислоты.
Одна из молекул пировиноградной кислоты окисляется с отщеплением одной молекулы углекислоты, и образуется уксусная кислота.
Углекислота связывается с другой молекулой пировиноградной кислоты, и образуется щавелевоуксусная кислота. Уксусная кислота соединяется с коферментом А, происходит конденсация ее с щавелевоуксусной кислотой и водой, и образуется лимонная кислота.
Лимонная кислота превращается в аконитовую кислоту. Далее происходит еще ряд превращений с образованием снова щавелевоуксусной кислоты, и па этом цикл заканчивается. Лимонная кислота оказывается вся разложенной.
Из ферментов в цикле участвуют дегидрогеназы НАД, ФАД, цитохромы. Так, при дегидровании янтарной кислоты в цикле от нее отнимается электрон, он переносится на ФАД, и образуется ФАД-Н2, янтарная кислота окисляется в фумаровую кислоту. Электроны далее продвигаются по цепочке цитохромов к кислороду.
Происходит соединение с активированным цитохромоксидазой кислородом с образованием воды. Непосредственно же кислород в реакциях не участвует.
Рис. 19. Схема цикла трикарбоновых кислот (цикл Кребса)
Подсчитано, что в этом цикле из одной молекулы глюкозы образуется 36 молекул АТФ и в процессе гликолиза две молекулы АТФ, всего, следовательно, 38 молекул АТФ, или 380 больших калорий из 680 больших калорий, содержащихся в грамм-молекуле глюкозы, т. е. получено 55% полезной химической энергии. Это очень большой процент но сравнению с к.п.д., получаемым в технике (12-25%). Энергия выделялась постепенно по частям.
Если бы она была выделена сразу, то клетка была бы повреждена.
Ферменты, принимающие участие в реакциях, расположены в митохондриях и локализованы рядами по порядку их действия в ходе гликолиза и цикла трикарбоновых кислот.
Продукты распада триоз частично идут на биосинтез. Так, из пировиноградной кислоты может образоваться аланин, из кетоглутаровой кислоты — глютаминовая кислота, из щавелевоуксусной кислоты — аспарагиновая кислота путем аминирования.
Уксусная кислота может пойти на синтез высших жирных кислот.
Протекающие при дыхании реакции имеют сопряженный характер окисления-восстановления. В ходе реакций окисления-восстановления развивается электродвижущая сила, которая может быть измерена в виде так называемого окислительно-восстановительного потенциала (rН2).
Аэробы приспособлены к более высокому rН2 (20 и выше), анаэробы — к низкому (0-12), факультативные анаэробы — 0-20.
Снижая rН2 среды, можно добиться роста анаэробов в присутствии кислорода, а повышая rН2, выращивать аэробы в анаэробных условиях.
В энергетическом отношении анаэробное дыхание во много раз менее эффективно, чем аэробное. Так, если при аэробном процессе окисления глюкозы до СО2 и Н2О получается 674 ккал, то при спиртовом брожении — 27 ккал, при молочнокислом — 18 ккал и при масляно-кислом — всего 15 ккал. Это объясняется тем, что конечными продуктами анаэробного окисления являются органические соединения, сохранившие еще большой запас энергии.
Например, спирт (продукт спиртового брожения) прекрасно горит.
Потерю тепла при брожении можно наблюдать в культурах, хорошо защищенных от потери тепла.
За счет выделения этого тепла происходит самонагревание влажного сена, навоза, торфа и пр.
У светящихся бактерий потеря энергии выражается в виде свечения. Свечение морской воды, гнилого дерева, мха, рыбы объясняется присутствием на них особых светящихся бактерий аэробов. Они имеют особый фермент — люцеферазу, который химическую энергию АТФ переводит в энергию света.
К анаэробным относятся палочки столбняка, ботулинуса, масляно-кислые бактерии, возбудители газовой гангрены и др.
К аэробам относятся нитрифицирующие, уксуснокислые, азотобактерии, миксобактерии, плесени, микобактерии, холерный вибрион. Факультативные анаэробы — кишечная палочка, дифтерийная палочка, стрептококк, стафилококк, спириллы и др.
Физиология микроорганизмов изучает особенности развития, питания, энергетического обмена и других процессов жизнедеятельности микробов в различных условиях среды.
Питание микробов осуществляется путем диффузии через оболочку и мембрану растворенных в поде питательных веществ.
Нерастворимые сложные органические соединения предварительно расщепляются вне клетки с помощью ферментов, выделяемых микробами и субстрат.
По способу питания микроорганизмы разделяют на аутотрофные и гетеротрофные.
Аутотрофы способны синтезировать из неорганических веществ (в основном углекислого газа, неорганического азота и воды) органические соединения. В качестве источника энергии для синтеза эти микробы используют световую энергию (фотосинтез) или энергию окислительных реакций (хемосинтез).
Гетеротрофы используют для питания в основном готовые органические соединения.
Микробы, питающиеся органическими веществами отмерших животных или растительных организмов, называют сапрофитами. К ним относятся бактерии гниения, грибы и дрожжи. Паратрофные микроорганизмы, или паразиты, живут за счёт питательных веществ живых клеток организма хозяина. К паратрофам относится большинство болезнетворных микробов.
Дыхание.Процессы биосинтеза веществ микробной клетки протекают с затратой энергии.
Большинство микробов используют энергию химических реакций с участием кислорода воздуха. Этот процесс окисления питательных веществ с выделением энергии принято называть дыханием. Энергия высвобождается при окислении неорганических (аутотрофы) или органических (гетеротрофы) веществ.
Аэробные микроорганизмы (аэробы) используют энергию, выделяемую при окислении органических веществ кислородом воздуха с образованием неорганических веществ, углекислого газа и воды.
К аэробам относятся многие бактерии, грибы и некоторые дрожжи. В качестве источника энергии они чаще всего используют углеводы.
Анаэробные микроорганизмы (анаэробы) не используют для дыхания кислород, они живут и размножаются при отсутствии кислорода, получая энергию в результате процессов брожения. Анаэробами являются бактерии из рода клостридий (ботулиновал палочка и палочка перфрингенс), маслянокислые бактерии и др.
В анаэробных условиях проходят спиртовое, молочнокислое и маслянокислое брожение, при этом процесс превращения глюкозы в спирт, молочную или масляную кислоту происходят с выделением энергии.
Около 50% выделенной энергии рассеивается и виде тепла, а остальная часть аккумулируется в АТФ (аденозинтрифосфорная кислота).
Некоторые микроорганизмы способны жить как в присутствии кислорода, так и без него. Учитывая зависимость отусловий среды они могут переходить с анаэробных процессов получения энергии на аэробные, и наоборот. Такие микроорганизмы называются факультативными анаэробами.
Обмен веществ и состав микроорганизмов
Все реакции обмена веществ в микробной клетке происходят при помощи биологических катализаторов – ферментов. Большинство ферментов состоят из белковой части и простетической небелковой группы. В простетическую группу могут входить такие металлы, как железо, медь, кобальт, цинк, а также витамины или их производные. Некоторые ферменты состоят только из простых белков. Ферменты специфичны и действуют только на одно определенное вещество. По этой причине в каждом микроорганизме находится целый комплекс ферментов, причем некоторые ферменты способны выделяться наружу, где участвуют в подготовке к усвоению сложных органических соединений.
Ферменты микроорганизмов используются в пищевой и других видах промышленности.
Вода. Микробная клетка на 75—85 % состоит из воды.
Большая часть воды находится в цитоплазме клетки в свободном состоянии. В воде протекают все биохимические процессы обмена веществ, вода является также растворителем этих веществ, так как питательные вещества поступают в клетку только в виде раствора, а продукты обмена удаляются из клетки тоже с водой.
Часть воды в клетке находится в связанном состоянии и входит в состав некоторых клеточных структур.
В спорах бактерий и грибов количество свободной воды снижено до 50 % и менее.
При значительной потере связанной воды микробная клетка погибает.
Органические вещества микробной клетки представлены белками (6—14 %), жирами (1—4 %), углеводами, нуклеиновыми кислотами.
Белки основной пластический материал любой живой клетки, и микробной в том числе.
Белки составляют основу цитоплазмы, входят в состав оболочки клетки и некоторые клеточные структуры. Οʜᴎ выполняют очень важную каталитическую функцию, так как входят в состав ферментов, катализирующих реакции обмена в микробной клетке.
В клетке микробов содержатся дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК).
ДНК находится в основном в ядре клетки или нуклеотидах, РНК — в цитоплазме и рибосомах, где участвует в синтезе белка.
Жиры. Содержание жиров у различных микроорганизмов различно, у некоторых дрожжей и плесеней оно выше в 6—10 раз, чем у бактерий. Жиры (липиды) являются энергетическим материалом клетки. Жиры в виде липопротеидов входят в состав цитоплазматической мембраны, которая выполняет важную функцию в обмене клетки с окружающей средой.
Жиры могут находиться в цитоплазме в виде гранул или капелек.
Углеводы входят в состав оболочек, капсул и цитоплазмы. Οʜᴎ представлены в основном сложными углеводами — полисахаридами (крахмал, декстрин, гликоген, клетчатка), бывают в соединении с белками или липидами. Углеводы могут откладываться в цитоплазме в виде зерен гликогена, как запасного энергетического материала.
Минеральные вещества (фосфор, натрий, магний, хлор, сера и др.) входят в состав белков и ферментов микробной клетки, они необходимы для обмена веществ и поддержания нормального внутриклеточного осмотического давления.
Витамины необходимы для нормальной жизнедеятельности микроорганизмов.
Οʜᴎ участвуют в процессах обмена веществ, так как входят в состав многих ферментов. Витамины, как правило, должны поступать с пищей, однако некоторые микробы обладают способностью синтезировать витамины, к примеру В2 или В12.