Фотосинтез продуктивность экосистем: что это такое?

Фотосинтез продуктивность экосистем

Продуктивность экосистем тесно связана с потоком энергии, проходящим через ту или иную экосистему. В каждой экосистеме часть приходящей энергии, попадающей в трофическую сеть, накапливается в виде органических соединений.

Безостановочное производство биомассы (живой материи) — один из фундаментальных процессов биосферы.

Органическое вещество, создаваемое продуцентами в процессе фотосинтеза или хемосинтеза, называют первичной продукцией экосистемы (сообщества).

Количественно ее выражают в сырой или сухой массе растений или в энергетических единицах —эквивалентном числе ккалорий или джоулей.

Первичной продукцией определяется общий поток энергии через биотический компонент экосистемы, а следовательно, и биомасса живых организмов, которые могут существовать в экосистеме.

Примечание: интенсивность продукции пропорциональна густоте штриховки

Теоретически возможная скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений.

А как известно, лишь часть энергии света, получаемой зеленой поверхностью, может быть использована растениями. Из коротковолнового излучения Солнца только 44% относится к фотосинтетически активной радиации (ФАР) — свет по длине волны, пригодный для фотосинтеза.

Максимально достигаемый в природе КПД фотосинтеза 10—12% энергии ФАР, что составляет около половины от теоретически возможного, отмечается в зарослях джугары и тростника в Таджикистане в кратковременные, наиболее благоприятные периоды. КПД фотосинтеза в 5% считается очень высоким для фитоценоза.

В целом по земному шару усвоение растениями солнечной энергии не превышает 0,1 % из-за ограничения фотосинтетической активности растений множеством факторов, среди них таких, как недостаток тепла и влаги, неблагоприятные физические и химические свойства почвы и т. д. Средний коэффициент использования энергии ФАР для территории России равен 0,8%, на европейской части страны составляет 1,0—1,2%, а в восточных районах, где условия увлажнения менее благоприятны, не превышает 0,4—0,8%.

Скорость, с которой растения накапливают химическую энергию, называют валовой первичной продуктивностью (ВПП). Около 20% этой энергии расходуется растениями на дыхание и фотодыхание. Скорость накопления органического вещества за вычетом этого расхода называется чистой первичной про дуктивностью (ЧПП).

Это энергия, которую могут использовать организмы следующих трофических уровней. Количество органического вещества, накопленного гетеротрофными организмами, называется вторичной продукцией. Вторичную продукцию вычисляют отдельно для каждого трофического уровня, так как прирост массы на каждом из них происходит за счет энергии, поступающей с предыдущего.

Гетеротрофы, включаясь в трофические цепи, в конечном итоге живут за счет чистой первичной продукции сообщества. Полнота ее расхода в разных экосистемах различна. Постеленное увеличение общей биомассы продуцентов отмечается, если скорость изъятия первичной продукции в цепях питания отстает от темпов прироста растений.

Мировое распределение первичной биологической продукции весьма неравномерно.

Чистая продукция меняется от 3000 г/м2/год до нуля в экстрааридных пустынях, лишенных растений, или в условиях Антарктиды с ее вечными льдами на поверхности суши, а запас биомассы — соответственно от 60 кг/м2 до нуля.

Р. Уиттекер (1980) делит по продуктивности все сообщества на четыре класса.

1. Сообщества высшей продуктивности, 3000—2000 г/м2/год. Сюда относятся тропические леса, посевы риса и сахарного тростника. Запас биомассы в этом классе продуктивности весьма различен и превышает 50 кг/м2 в лесных сообществах и равен продуктивности у однолетних сельскохозяйственных культур.

Сообщества высокой продуктивности, 2000—1000 г/м2/год. В этот класс включены листопадные леса умеренной полосы, луга при применении удобрений, посевы кукурузы. Максимальная биомасса приближается к биомассе первого класса. Минимальная биомасса соответственно равна чистой биологической продукции однолетних культур.

3. Сообщества умеренной продуктивности, 1000—250 г/м2/год. К этому классу относится основная масса возделываемых сельскохозяйственных культур, кустарники, степи.

Биомасса степей меняется в пределах 0,2—5 кг/м2.

4. Сообщества низкой продуктивности, ниже 250 г/м^год — пустыни, полупустыни (в отечественной литературеих называют чаще опустыненными степями), тундры.

Биомасса и первичная продуктивность основных типов экосистем представлена в табл.

Таблица. Биомасса и первичная продуктивность основных типов экосистем (по Т. Д. Акимовой, В. В.)

Экосистемы Биомасса, т/га Продукция, т/га в год
Пустыни Центральные зоны океана Полярные моря Тундра Степи Агроценозы Саванна Тайга Лиственный лес Влажный тропический лес Коралловый риф 0,1—0,5 0,2—1,5 1—7 1—8 5—12 — 8—20 70—150 100—250 500—1500 15—50 0,1—0,5 0,5—2,5 3—6 1—4 3—8 3—10 4—15 5—10 10—30 25—60 50—120

На территории России в зонах достаточного увлажнения первичная продуктивность увеличивается с севера на юг, с увеличением притока тепла и продолжительности вегетационного периода (сезона).

Годовой прирост растительности изменяется от 20 ц/га на побережье и островах Северного Ледовитого океана до более чем 200 ц/га в Краснодарском крае, на Черноморском по-1 бережье Кавказа (рис. 12.34).

Рис. 12.34. Запасы фитомассы (А) основных экосистем европейской I территории России и соотношение (в %) частей фитомассы (Б):

1 — зеленые части растений; 2— надземные многолетние одревес- ‘ несшие части; 3 — подземные части

Общая годовая продуктивность сухого органического вещества на Земле составляет 150—200 млрд т.

Две трети его образуется на суше, третья часть — в океане.

Практически вся чистая первичная продукция Земли служит для поддержки жизни всех гетеротрофных организмов. Энергия, недоиспользованная консументами, запасается в их телах, гумусе почв и органических осадках водоемов.

Питание людей большей частью обеспечивается сельскохозяйственными культурами, занимающими около 10% площади суши. Годовой прирост культурных растений равен примерно 16% всей продуктивности суши, большая часть которой приходится на леса.

Половина урожая идет непосредственно на питание людей, остальное — на корм домашним животным, используется в промышленности и теряется в отходах.

Всего человек потребляет около 0,2% первичной продукции Земли. Ресурсы, имеющиеся на Земле, включая продукцию животноводства и результаты промысла на суше и в океане, могут обеспечить ежегодно только 50% потребностей современного населения Земли.

За успехам и в мировом производстве продовольствия скрывается тот факт, что с 1950 по 1988 г. среднедушевое производство продовольствия сократилось в 43 развивающихся странах (22 африканские страны), где проживает каждый седьмой житель планеты. Самый большой спад наблюдается в Африке.

Здесь в период между I960 и 1988 г. среднее производство продовольствия в перерасчете на душу населения упало на 21 %. Предполагается, что в ближайшие 25 лет оно сократится еще на 30%. Особенно трудно обеспечить население вторичной продукцией.

В рацион человека должно входить не менее 30 г белков в день.

Следовательно, увеличение биологической продуктивности экосистем и особенно вторичной продукции является одной из основных задач, стоящих перед человечеством.

Что такое фотосинтез

Все органические вещества, встречающиеся в живой природе, – продукты жизнедеятельности автотрофных организмов, синтезируемых ими из неорганических веществ.

Такой процесс называется фотосинтезом. Основная роль в нем принадлежит фотосинтезирующим организмам, главным образом зеленым растениям, использующим для фотосинтеза энергию солнечного света, которая поглощается зеленым пигментом – хлорофиллом.

Кроме зеленых растений, к фотосинтезу способны некоторые прокариоты: цианобактерии (синезеленые), пурпурные и зеленые бактерии.

В ходе фотосинтеза создаются органические вещества, необходимые для жизни и самих фотосинтетиков, и гетеротрофных организмов.

Световая энергия в процессе фотосинтеза превращается в доступную для всех организмов энергию химических связей органических веществ, запасаемую в продуктах фотосинтеза (простые углеводы, крахмал и другие полисахариды).

В процессе фотосинтеза зеленые растения и цианобактерии выделяют кислород, который используется при дыхании организмов (зеленые и пурпурные бактерии кислород не выделяют).

В фотосинтезе участвуют пигменты (зеленые – хлорофилл, желтые – каротиноиды), ферменты и другие соединения, упорядоченно расположенные на выростах внутренней мембраны – тилакоидах или в стреме хлоропласта.

Тилакоиды представляют собой уплощенные замкнутые мембранные мешочки, которые как бы накладываются друг на друга и образуют структуры – граны, напоминающие стопки монет

У растений в процессе фотосинтеза выделяют две последовательные фазы – световую и темновую.

Световая фаза фотосинтеза происходит на свету и только на внутренних мембранах хлоропласта – в тилакоидах, в которые встроены молекулы хлорофилла.

В реакциях световой фазы участвуют хлорофилл, вода, ферменты и молекулы-переносчики, встроенные в мембраны.

Молекулы хлорофилла поглощают свет, электроны их атомов приходят в возбужденное состояние и перескакивают на орбитали, удаленные от ядра. Вследствие этого связь электронов с ядром ослабевает. Затем электроны подхватываются молекулами-переносчиками и выносятся на наружную сторону мембраны тилакоида.

В это же время под воздействием света происходит фотолиз воды, содержащейся в жидком веществе хлоропластов.

Молекулы воды разлагаются на протоны водорода (H+) и ионы гидроксида (OH-).

Последние отдают свои электроны, которые, в свою очередь, восполняют утраченные молекулами хлорофилла электроны. Гидроксильные группы (OH), соединяясь между собой, образуют молекулы воды и молекулярный кислород (O2), который выступает как побочный продукт фотосинтеза.

Протоны водорода накапливаются на внутренней стороне мембраны тилакоида. Постепенно по обеим сторонам мембраны между разноименно заряженными электронами и протонами водорода возникает разность потенциалов.

При достижении критического уровня разности потенциалов протоны водорода начинают продвигаться по каналу белка АТФ-синтетазы, встроенного в мембрану тилакоида. Прохождение протонов водорода через канал АТФ-синтетазы сопровождается освобождением энергии, которая запасается в виде синтезируемой АТФ. На наружной стороне мембраны тилакоида протон водорода присоединяет электрон, превращаясь в атомарный водород (H).

В результате световой фазы синтезируются молекулы АТФ, образуется атомарный водород, выделяется молекулярный кислород.

Эффективность световой фазы фотосинтеза велика: в результате фотохимических и фотофизических реакций запасается около 96% энергии поглощенного света.

Для осуществления темновой фазы свет не является обязательным условием, она протекает без участия света. Процессы темновой фазы происходят в строме хлоропластов, куда от тилакоидов гран поступают молекулы-переносчики, АТФ, а из воздуха – углекислый газ.

В строме имеется особое вещество – рибулозобифосфат (РиБФ), присоединяющий к себе углекислый газ с образованием шестиуглеродного промежуточного вещества.

Оно, в свою очередь, распадается на две молекулы фосфоглицериновой кислоты (ФГК), которая является продуктом фотосинтеза, использующим энергию образующихся в световой фазе АТФ и атомарный водород. Через цепь химических реакций ФГК превращается частично вновь в РиБФ, частично – в глюкозу.

Суммарное уравнение фотосинтеза выглядит следующим образом:

6CO2 + 6H2O → C6H12O6 + O2

Фотосинтез и первичная биологическая продуктивность

Фотосинтез (от греч. φωτο- — свет и σύνθεσις — синтез, совмещение, помещение вместе) — процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий).

В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция — совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества.

Рис.1. Фазы фотосинтеза

Фотосинтез является основным источником биологической энергии, фотосинтезирующие автотрофы используют её для синтеза органических веществ из неорганических, гетеротрофы существуют за счёт энергии, запасённой автотрофами в виде химических связей, высвобождая её в процессах дыхания и брожения.

Энергия получаемая человечеством при сжигании ископаемого топлива (уголь, нефть, природный газ, торф) также является запасённой в процессе фотосинтеза.

Фотосинтез является главным входом неорганического углерода в биологический цикл.

Весь свободный кислород атмосферы — биогенного происхождения и является побочным продуктом фотосинтеза. Формирование окислительной атмосферы (кислородная катастрофа) полностью изменило состояние земной поверхности, сделало возможным появление дыхания, а в дальнейшем, после образования озонового слоя, позволило жизни выйти на сушу.

Cветовая фаза фотосинтеза

Осуществляется в хлоропластах, в которых на мембранах располагаются молекулы хлорофилла.

Хлорофилл поглощает энергию солнечного света, которая затем используется при синтезе молекул АТФ из АДФ и фосфорной кислоты, а также способствуют расщеплению молекул воды: 2H20 = 4H+ + 4e- + O2­.

Кислород, образующийся при расщеплении выделяется в окружающую среду в свободной форме. Под влиянием энергии солнечного света молекула хлорофилла возбуждается, в результате чего один из её электронов переходит на более высокий энергетический уровень. Этот электрон, проходя по цепи переносчиков (белков мембраны хлоропласта), отдаёт избыточную энергию на окислительно-восстановительные реакции (синтез молекул АТФ).

Молекулы хлорофилла, потерявшие электроны, присоединяют электроны, образующиеся при расщеплении молекулы воды.
Под действием света электрон в реакционном центре переходит в возбуждённое состояние «перескакивая» на высокий энергетический уровень молекулы хлорофилла. Часть электронов, захваченных ферментами способствует образованию АТФ путём присоединения остатка фосфорной кислоты (Ф) и АДФ. Другая часть электронов принимает участие в разложении воды на молекулярный кислород, ионы водорода и электроны.

Образовавшийся водород с помощью электронов присоединяется к веществу, способному транспортировать водород в пределах хлоропласта.

Темновая фаза фотосинтеза

Для темновой фазы фотосинтеза обязательным компонентом является углекислый газ – СО2. Поэтому растение должно постоянно его поглощать из атмосферы. Для этой цели на поверхности листа имеются специальные структуры – устьица.

Когда они открываются, СО2 поступает именно внутрь листа, растворяется в воде и вступает в реакцию световой фазы фотосинтеза. В ходе световой фазы у большинства растений СО2 связывается с пятиуглеродным органическим соединением (которое представляет собой цепочку из пяти молекул углерода), в результате чего образуются две молекулы трехуглеродного соединения (3-фосфоглицериновая кислота).

Т.к. первичным результатом являются именно эти трехуглеродные соединения, растения с таким типом фотосинтеза получили название С3-растений. Дальнейший синтез, происходящий в хлоропластах, довольно сложен. В конечном итоге образуется шестиуглеродное соединение, из которого потом могут синтезироваться глюкоза, сахароза или крахмал.

Именно в виде этих органических веществ растение накапливает энергию. Только небольшая их часть остается в листе и используется для его нужд. Остальные же углеводы путешествуют по всему растению и поступают именно туда, где больше всего нужна энергия, например, в точки роста.

Биологическая продуктивность

Образование биомассы организмами, выражаемое потоками органического вещества и его потенциальной химической энергии на единицу площади за единицу времени.

Понятие биологическая продуктивность применимо к растительности, сообществам (фитоценозам), к их отдельным ярусам, к отдельным популяциям растений и животных. Продуктивность всех популяций организмов на единицу площади характеризует биологическая продуктивность биогеоценозов и экосистем. Специфику процесса изучает физиология растений.

Биологическая продуктивность иногда отождествляют с запасами биомассы на единицу площади, что может лишь отчасти характеризовать биологическая продуктивность. Различают первичную и вторичную биологическую продуктивность.

Первичная биологическая продуктивность характеризуется образованием биомассы (первичной продукции) в процессе фотосинтеза зелёными растениями (автотрофами), которые образуют первый трофический уровень экосистемы и служат началом всех цепей питания. К первичным продуцентам относят и некоторые хемосинтезирующие бактерии. В процессе утилизации вещества и энергии первичной продукции образуется биомасса всех гетеротрофных организмов (бактерий, грибов и животных), называемых консументами.

Продукция консументов характеризует вторичную биологическая продуктивность, к которой относят и массу хищных животных, питающихся растительноядными и другими хищниками.

Рис.2. Первичная биологическая продуктивность

При исследованиях первичной биологической продуктивности наземных биогеоценозов определяют ряд показателей, которые затем используют в качестве отдельных статей баланса органические вещества на конкретных участках.

Продукция, определяемая с учётом затрат вещества и энергии на процессы метаболизма самих организмов-продуцентов, называется первичной брутто-продукцией, или валовой продукцией (обычно обозначают GPP — от англ, gross primary production). Разность между первичной брутто-продукцией и затратами растений на дыхание (Ra) определяет первичную нетто-продукцию — NPP (от англ, net primary production).

В лесном фитоценозе NPP включает в себя не только чистую продукцию прироста за учитываемый период (истинный прирост фитомассы) — NEP (net ecosystem production), но и продукцию, перешедшую за то же время в опад (листья, цветки, семена и др.) и отпад (отмершие деревья, сучья и др.), которые суммарно обозначаются L, а также часть продукции живых растений, пошедшую на корм животных-фитофагов (консумпцию) — Сa.

Сумму этих показателей часто называют гетеротрофным дыханием (Rh), поскольку энергия в обоих этих потоках (Rh=L+Ca) освобождается главным образом с участием гетеротрофных организмов.

Для консументов, независимо от их трофической специализации, применяют иную схему.

Отчуждаемая при консумпции фитофагами продукция растений в некотором количестве поедается животными, остальная (огрызки, объедки) поступает в опад. Съеденная пища частично ассимилируется организмами, частично экскре-тируется и поступает в детрит. За счёт продуктов ассимиляции происходит прирост биомассы, т. е. формируется продукция и поддерживаются процессы метаболизма.

В продукцию включаются вещество или энергия прироста (привеса) животных за изучаемый период и прироста потомства. Эти величины, с учётом вещества и энергии элиминированных особей, характеризуют прирост биомассы животных. Биомасса животных-иммигрантов в продукцию не включается. При этом ассимилированная пища и прирост биомассы животных соответствуют общей (брутто) и чистой (нетто) продукции автотрофов.

Первичная биологическая продуктивность зависит от интенсивности фотосинтеза растениями и продолжительности его периода, фотосинтезирующей поверхности фитоценозов и древостоев, выражаемой индексом листовой поверхности и характером расположения листвы в толще полога, а также от кол-ва поступающей фотосинтетической радиации, условий увлажнения и минерального питания.

Кульминация первичной продукции насаждений, выражаемая чистой продукцией (NPP) или истинным приростом фитомассы (NEP), приходится на возраст 20—40 лет. Однако в искусств, насаждениях она наступает раньше, чем в естественных, хотя с возрастом различия Б. п. лесных культур и естественных древостоев сглаживаются.

cyber
Оцените автора
CyberLesson | Быстро освоить программирование Pascal и C++. Решение задач Pascal и C++
Добавить комментарий