Где вырабатываются антитела в организме человека?

Иммунные свойства крови: антигены и антитела

Проникновение в организм человека тех или иных болезнетворных микроорганизмов не у всех людей вызывает заболевание. Отдельные лица обладают невосприимчивостью ко многим болезням.

Например: скарлатиной заболевают лишь 40-50%детей, контактировавших с больными. Это говорит о том, что у человека имеются факторы и механизмы, препятствующие развитию инфекции.

Факторы защиты подразделяются на:

  • 1. Неспецифические –кожа, слизистые оболочки, которые представляют задерживающий барьер. К ним относятся фагоциты – клетки-пожиратели (лейкоциты), которые находятся в крови, лимфоузлах, селезенке, красном костном мозге.
  • 2. Специфические факторы – это решающие факторы в борьбе с инфекциями, они вырабатываются в организме. Они обусловливают специфическую невосприимчивостьорганизма к той инфекции, против которой они выработаны. Эту форму защиты называют иммунитетом.

Специфичность иммунитета выражается в том, что он обусловливает защиту лишь против одной инфекции и совершенно не влияет на восприимчивость к другим инфекциям. Так вещества, выработанные против возбудителя коклюша, бессильны против возбудителя коклюша, бессильны против возбудителя скарлатины.

Иммунный процесс – это ответ организма на определенного рода раздражение, на вторжение чужеродного агента – антигена.

Под антигеном обычно понимают несвойственные данному организму соединения, чаще всего белки, проникшие в его внутреннюю среду, минуя желудочно-кишечный тракт. Антигенными свойствами обладают все белки, некоторые полисахариды и вещества смешанной природы. Антигенами могут быть живые тела (бактерии, микробы, вирусы), химические вещества. Антигенов насчитывают сотни тысяч.

Защищая организм от антигенов, кровь вырабатывает особые белковые тела – антитела (противотела), которые обезвреживают антигены.

В настоящее время хорошо известна химическая природа антител. Все они являются специфическими белками – гамма-глобулинами. Антитела образуются клетками лимфоузлов, селезенки, красного костного мозга. Отсюда они проникают в кровь и циркулируют по организму. Наиболее активно вырабатывают антитела лимфоциты и моноциты.

Защитные тела (антитела) по разному действуют на проникшие в организм микробы и чужеродные вещества. Одни антитела склеивают микроорганизмы, другие – осаждаютсклеенные частицы, а третьи разрушают и растворяют их.Такие антитела называют преципитинами.

Антитела, растворяющие бактерии, называют бактериолизинами.

Антитела, нейтрализующие токсины (яды) бактерий, змей, растений, называют антитоксинами.

Что такое антитела

Антитела это крупные Y-образные белки, которые вырабатываются клетками плазмы и применяются иммунной системой в целях уничтожения чужеродных микроорганизмов (вирусов и бактерий).

Антитело по другому называется иммуноглобулин. Антитела это гликопротеины из суперсемейства иммуноглобулинов. Представляют большую часть гамма-глобулиновой фракции белков крови.

При попадании в организм патогена (антигена), его молекула распознается антителами через вариабельную область Fab.

На кончике каждого антитела содержится паратоп, который является специфичным для каждого конкретного эпитопа на антигене, что позволяет связываться этим структурам вместе с абсолютной точностью. Данный процесс связывания позволяет антителам помечать патогенные молекулы или клетки для последующей атаки клетками иммунной системы для их нейтрализации.

Такой процесс препятствует развитию заболевания, а также может активировать макрофаги для уничтожения вредных микроорганизмов. Производство антител возложено на гуморальную иммунную систему, это является основной ее функцией.

Взаимодействие антител с другими компонентами иммунной системы происходит через Fc-область.

Секреция антител происходит B-клетками адаптивной иммунной системы, чаще всего дифференцированными B-клетками (плазматическими клетками).

Антитела присутствуют в двух формах, а именно в растворимой, свободно распространяющиеся в плазме крови, а также в форме, связанной с мембраной, прикрепляющейся к поверхности B-клетки, называемыми B-клеточными рецепторами. B-клеточные рецепторы присутствуют только на поверхности B-клеток, что облегчает активацию этих клеток и их дифференциацию на различные области производства антител (плазматические клетки или клетки памяти) B-клеток, которые выживают в организме, запоминая определенный (тот же) антиген, что позволяет реагировать B-клеткам быстрее при следующем попадании этого антигена в организм.

Работа растворимых антител продолжается после их высвобождения в кровь и в другие жидкости организма, где они продолжают обследование чужеродных микроорганизмов.

Строение антител

Антитела это тяжелые примерно 150 кДа белки, содержащие сахарные цепи (гликаны), т.е. антитела это гликопротеины. Основной функциональной единицей каждого антитела является мономер иммуноглобулина.

В общем все антитела имеют примерно схожую структуру, но небольшая область на кончике белка очень изменчива, что позволяет существовать миллионам антител с различиями именно на этом кончике.

Данное место называется гипервариабельной областью. Каждый вариант кончика способен связываться с определенным антигеном. Такой огромный вариант антител-паратопов дает возможность иммунной системе связывать множество чужеродных микроорганизмов, вторгающихся в организм человека.

Большое разнообразие паратопов антител достигается за счет рекомбинации — процесса их случайной мутации в области гена антитела.

Паратоп антителя является полигенным и состоит из трех генов V, D, J. Паратопный локус полиморфен, поэтому при продуцировании антитела выбирается по одному аллелю из генов V, D, J, после чего сегменты генов соединяются вместе случайно генетической рекомбинацией для создания паратопа. Области, в которых гены случайным образом рекомбинируются вместе называются гиперпеременной областью, которая используется для распознавания антигенов. В ходе процесса под названием коммутация классов, происходит реорганизация генов антител, в результате чего один тип фрагмента Fc тяжелой цепи меняется на другой, создавая другой изотип антитела.

Такой процесс дает возможность использовать одно антитело различными типами Fc-рецепторов.

В состав антитела входят несколько основных структурных единиц с двумя большими тяжелыми и двумя небольшими легкими цепями. Тяжелые цепи антител имеют несколько различных типов, определяемых пятью типами кристаллизующихся фрагментов Fc, способные присоединяться к антигенсвязывающимся фрагментам. Пять различных типов областей Fc дают возможность антителам группироваться в пять изотипов. При этом каждая область Fc конкретного изотипа антитела имеет возможность связываться со своим специфическим Fc-рецептором, кроме lgD, являющимся по существу B-клеточным рецептором.

Это позволяет структуре антиген-антитело опосредовать разные роли, которые будут зависеть от Fc-рецептора с которым он связывается. При этом структуры гликанов, присутствующие в области Fc модулируют способность антител связываться с его соответствующим Fc-рецептором. Такая способность антител способствует направлению необходимого иммунного ответа на каждый отдельный тип патогенного объекта. Так например, lgE несет ответственность за аллергическую реакцию, которая представляет собой дегрануляцию тучных клеток и высвобождение гистамина.

В данном случае Fab-паратоп lgE связывается с аллергеном (антигеном), чем может быть частицы клещей, пыли и т.д., его Fc-область связывается с Fc-рецептором ε. Такая связь активирует аллергическую трансдукцию сигнала, индуцируя например астму.

Как действуют антитела

В ходе работы антител, паратоп антитела взаимодействует с эпитопом антигена, которых содержится несколько прерывисто расположенных вариантов вдоль его поверхности. При этом доминирующие эпитопы на поверхности антигена называют детерминантами.

Взаимодействие антитела и антигена строится по принципу замок-ключ в пространственной комплементарности. Следует отметить, что молекулярные силы, которые участвуют во взаимодействии Fab-эпитопов слабые и неспецифические.

К таким силам относятся электростатические силы, водородные связи, гидрофобные взаимодействия и силы Ван-дер-Ваальса. Это говорит о том, что связь антитела с антигеном не является абсолютной и может быть обратимым.

Это также позволяет антителу перекрестно реагировать с разными антигенами.

Бывает и так, что при связывании антитела с антигеном они становятся сами по себе иммунным комплексом, функционирующим как единый объект и действующим как антиген, на борьбу с которым будут направлены другие антитела. Пример таких молекул это гаптены, которые сами по себе не активируют иммунную систему, а делают это только после связывания с белками.

Основные функции антител следующие:

  • Агглютация.

В данном процессе антитела склеивают посторонние клетки в комки, комки в свою очередь атакуются фагоцитами.

  • Активация комплемента или фиксация. При этом процессе происходит фиксация антител на враждебной клетке, что способствует ее атаке комплексом мембранной атаки, вызывая лизис враждебной клетки или процесс воспаления, притягивая клетки воспалители.
  • Нейтрализация. В ходе нейтрализации они блокируют части поверхности чужеродного антигена, делая его атаку неэффективной.
  • Осаждение.

Осаждение начинается склеиванием сывороточно растворимых антигенов, которые затем выпадают в осадок в виде комков, которые также атакуются фагоцитами.

Происходит дифференцирование активированных B-клеток в продуцирующие антитела клетки или в клетки памяти, выживающие в организме следующие годы, что позволяет иммунной системе помнить антиген и осуществлять быструю реакцию на вторжение такого же объекта в будущем.

Антитела, связывающиеся с поверхностными антигенами, такими как бактерии, привлекают первый компонент каскада комплемента с их Fc областью, инициируя активацию классической системы комплемента.

Происходит уничтожение бактерии путем опсонизации — ее маркирования молекулой антитела для уничтожения фагоцитами или путем бактериолиза — комплекса мембранной атаки, позволяя уничтожать бактерию антителами напрямую.

При агглютинирование антитела связываются с патогенами, соединяя их вместе. Этому способствует наличие у антитела более одного паратопа. После того, как антитела покрыли патоген активируются эффекторные функции против патогена в клетках, распознающих свою Fc область.

Выработка антител в организме

Иммунная система, ответственная за биосинтез антител, состоит из ряда органов, основными из которых являются тимус, селезенка и периферические лимфоидные структуры в которых формируются три основных типа клеток: Т- и В-лимфоциты и макрофаги.

Антитела вырабатываются В-лимфоцитами, на поверхности которых уже имеются рецепторы, специфически связывающие антиген. В этот же комплекс включаются Т-лимфоциты и макрофаги.

В результате межклеточной кооперации происходит активация В-лимфоцитов и их трансформация в плазматические клетки. Большая часть образовавшихся плазматических клеток синтезирует антитела, аналогичные по специфичности рецепторам на поверхности В-лимфоцитов, и секретирует их в кровь.

Другая часть превращается в клетки «иммунологической памяти», способные выделять антитела при повторном введении антигена.

Каждый В-лимфоцит содержит на поверхности около 100 тыс. рецепторов одинаковой специфичности. Антиген, встречаясь в кровотоке с комплементарным рецептором, проводит отбор соответствующего В-лимфоцита, который затем, трансформируясь в плазматическую клетку и многократно делясь, образует клон клеток.

Эта теория биосинтеза антител, впервые сформулированная П. Эрлихом, а затем модифицированная в соответствии с уровнем развития науки Ф. Бернетом, получила название клонально-селекционной. Важно отметить, что каждый клон плазматических клеток секретирует гомогенные по своей структуре антитела.

Однако так как антиген активирует в крови сразу несколько типов В-лрмфоцитов, которые содержат рецепторы различной степени специфичности по отношению к исходному антигену, такой иммунный ответ называется поликлональным, а антитела — поликлональными.

Сыворотку животного, содержащую специфические к данному антигену антитела, называют антисывороткой. При этом обычно указывают, против какого антигена она выработана.

Например, когда говорят об антисыворотке кролика против эритроцитов человека, подразумевают, что в ответ на введение в кровь кролика эритроцитов человека образуются специфические к ним антитела. Принципиально важным является то, что поликлональные антитела даже против одной-единственной антигенной детерминанты гетерогенны как по структуре активного центра, так и по физико-химическим свойствам.

В том случае, если антиген поливалентен, например белок, то в сыворотке крови образуются антитела, направленные против каждой индивидуальной детерминанты, что еще более усложняет состав антител. Состав антител зависит от вида животного, а также стадии иммунного процесса.

Все перечисленные выше факторы влияют на гетерогенность антител и обусловливают определенные трудности как в изучении их структуры, так и в получении воспроизводимых стандартных препаратов антисывороток.

Работы Келера и Мильштейна по гибридизации животных клеток открыли принципиально новый путь получения антител. Сущность метода заключается в том, что из организма иммунизированного животного выделяются лимфоциты, которые специальным образом «сливаются» с миеломными клетками. Образующиеся клетки получили название гибридом.

Особенностью таких клеток является их способность размножаться и продуцировать антитела в искусственных условиях вне организма.

С помощью специальных методов клонирования можно выделить одну гибридную клетку, которая, размножаясь, будет секретировать в неограниченных количествах антитела только одного вида — моноклональные антитела.

Подчеркнем, что моноклональные антитела гомогенны как по специфичности, так и по физико-химическим свойствам.

В иммунной реакции организма наряду с фагоцитами участвуют лимфоциты. По функции и месту созревания лимфоциты разделяются на Т-лимфоциты (тимусзависимые) и В-лимфоциты (бурсазависимые). Известно, что макрофаги обнаруживают антигены и в процессе фагоцитоза выводят на клеточную поверхность неразрушенную часть антигена, где он распознается Т- и В-лимфоцитами.

Различают несколько разновидностей Т-лимфоцитов.

Т-киллеры (убийцы) способны убивать чужеродные клетки, например, опухолевые, клетки-мутанты, клетки чужеродных тканей трансплантантов. Т-супрессоры (угнетатели) блокируют чрезмерные реакции В-лимфоцитов, благодаря чему поддерживают гармоничное развитие иммунитета.

Т-хелперы (помощники) стимулируют реакции иммунитета путём взаимодействия с В-лимфоцитами, превращая их в плазматические клетки, которые синтезируют антитела (иммуноглобулины) и выделяют их в кровь, лимфу, тканевую жидкость. Иммуноглобулины способны нейтрализовать (обезвредить) чужеродные вещества (антигены). Антитела по-разному действуют на антигены: либо склеивают их, либо разрушают, либо растворяют, то есть выводят из строя.

Основная функция В-лимфоцитов – создание гуморального иммунитета путём выработки антител.

Согласно теории гуморального иммунитета, все иммунные процессы происходят в жидких средах организма (от лат.humor – жидкость).

Процесс выработки антител схематически представляется в следующем виде. Существует необозримо большое количество клонов мезенхимальных клеток, отличающихся своей способностью реагировать на антиген.

Антиген отбирает из предсуществующих клонов клеток только те, с которыми он может реагировать, стимулируя их размножение. Следствием этого является увеличение количества клеток, обладающих сродством к данному антигену, образуется «клон» этих клеток, вырабатывающих специфические к данному клону антитела.

Если антигенная стимуляция чрезмерна в силу избытка антигена или повышенной возбудимости клеток (во время их усиленного размножения в эмбриональном периоде), то клетка отвечает торможением своей активности.

Явление иммунологической толерантности и распознавание «своего» объясняется подавлением в эмбриональном периоде клонов клеток, преадаптированных к своим и вводимым извне антигенам.

Клонально-селекционная теория хорошо соответствует большинству известных в настоящее время в иммунологии фактов. Однако и против нее выставлен целый ряд вполне обоснованных доводов.

Наиболее часто подвергается сомнению возможность существования в организме клонов клеток, иммунологически компетентных по отношению ко всем антигенам, в том числе и вновь синтезированным и даже еще не синтезированным.

в организме существуют клоны клеток, в большей или меньшей степени преадаптированные к определенным антигенам.

Под влиянием антигенного стимула начинается усиленная пролиферация этого клона. В ходе случайных мутаций клеток в силу продолжающегося антигенного раздражения усиленно размножаются клетки, обладающие все возрастающим родством к антигену вплоть до формулы «как ключ к замку».

Гуморальный иммунитет

Гуморальный иммунитет открыл немецкий фармаколог Пауль Эрлих, который был современником И.И.Мечникова, открывшего клеточный иммунитет.

Пауль Эрлих знал о том факте, что в сыворотке крови животных, зараженных бактериями, появляются белковые вещества, способные убивать патогенные микроорганизмы. Эти вещества впоследствии были названы «антителами», а болезнетворные микробы и их токсины были названы «антигенами».

Самое характерное свойство антител – это их ярко выраженная специфичность. Как отмечал Пауль Эрлих, «отношения между токсином (антигеном) и антитоксином (антигеном) носят строго специфичный характер – например, столбнячный антитоксин нейтрализует исключительно яд столбняка…

противозмеиная сыворотка – только яд змеи и т.д.».

Характерными особенностями гуморального иммунитета являются:

  • 1) иммунологическая специфичность (один антиген – одно антитело);
  • 2) при инфекциях усиленная продукция соответствующих антител;
  • 3) способность сохранять память о первой встрече с антигеном.

Именно последнее свойство специфического иммунитета лежит в основе вакцинации.

Клетки иммунной системы

А. Лимфоциты обладают уникальным свойством — способностью распознавать антиген. Они делятся на B-, T-лимфоциты и нулевые клетки.

Под световым микроскопом все лимфоциты выглядят одинаково, но их можно отличить друг от друга по антигенам клеточной поверхности и функциям. T-лимфоциты составляют 70—80%, а B-лимфоциты — 10—15% лимфоцитов крови.

Оставшиеся лимфоциты называются нулевыми клетками. Антигены клеточной поверхности лимфоцитов можно выявить с помощью моноклональных антител, меченных флюоресцентными красителями. Источниками моноклональных антител служат гибридомы, получаемые при слиянии миеломных клеток с плазматическими. Гибридомы способны к неограниченному делению и выработке антител, специфичных к определенному антигену.

Поскольку набор антигенов клеточной поверхности лимфоцитов зависит не только от типа и стадии дифференцировки клеток, но и от их функционального состояния, с помощью моноклональных антител можно не только различить разные лимфоциты, но и отличить покоящиеся клетки от активированных. Антигены клеточной поверхности, выявляемые с помощью моноклональных антител,принято называть кластерами дифференцировки и обозначать CD.

CD нумеруются по мере их выявления. Подробнее об этих молекулах рассказано в гл. 20, п. II.

Популяции и субпопуляции лимфоцитов. B-лимфоциты способны вырабатывать антитела к разным антигенам и являются основными эффекторами гуморального иммунитета. От других клеток их можно отличить по наличию иммуноглобулинов на клеточной мембране. T-лимфоциты участвуют в реакциях клеточного иммунитета: аллергических реакциях замедленного типа, реакции отторжения трансплантата и других, обеспечивают противоопухолевый иммунитет.

Популяция T-лимфоцитов делится на две субпопуляции: лимфоциты CD4 — T-хелперы и лимфоциты CD8 — цитотоксические T-лимфоциты и T-супрессоры. Помимо этого существуют 2 типа T-хелперов: Th1 и Th2. Основные биологические эффекты некоторых цитокинов приведены в табл. 1.3. Нулевые клетки имеют ряд морфологических особенностей: они несколько крупнее B- и T-лимфоцитов, имеют бобовидное ядро, в их цитоплазме много азурофильных гранул.

Другое название нулевых клеток — большие гранулярные лимфоциты. По функциональным характеристикам нулевые клетки отличаются от B- и T-лимфоцитов тем, что распознают антиген без ограничения по HLA и не образуют клетки памяти (см. гл. 1, п. IV.А). Одна из разновидностей нулевых клеток — NK-лимфоциты. На их поверхности есть рецепторы к Fc-фрагменту IgG, благодаря чему они могут присоединяться к покрытым антителами клеткам-мишеням и разрушать их. Это явление получило название антителозависимой клеточной цитотоксичности.

NK-лимфоциты могут разрушать клетки-мишени, например опухолевые или инфицированные вирусами, и без участия антител.

Б. Фагоциты — макрофаги, моноциты, гранулоциты — мигрируют в очаг воспаления, проникая в ткани сквозь стенки капилляров, поглощают и переваривают антиген.

1. Макрофаги и моноциты.Клетки — предшественницы макрофагов — моноциты, выйдя из костного мозга, в течение нескольких суток циркулируют в крови, а затем мигрируют в ткани. Роль макрофагов в иммунитете исключительно важна — они обеспечивают фагоцитоз, переработку и представление антигена T-лимфоцитам.

Макрофаги вырабатывают ферменты, некоторые белки сыворотки, кислородные радикалы, простагландины и лейкотриены, цитокины (интерлейкины-1, -6, фактор некроза опухолей и другие). Предшественниками клеток Лангерганса, клеток микроглии и других клеток, способных к переработке и представлению антигена, также являются моноциты.

В отличие от B- и T-лимфоцитов, макрофаги и моноциты не способны к специфическому распознаванию антигена.

2. Нейтрофилы.Основная функция этих клеток — фагоцитоз. Действие нейтрофилов, как и макрофагов, неспецифично.

3. Эозинофилы играют важную роль в защите от гельминтов и простейших. По свойствам эозинофилы сходны с нейтрофилами, но обладают меньшей фагоцитарной активностью.

Считается, что в норме эозинофилы угнетают воспаление. Однако при бронхиальной астме эти клетки начинают вырабатывать медиаторы воспаления — главный основный белок, нейротоксин эозинофилов, катионный белок эозинофилов, лизофосфолипазу, — вызывающие повреждение эпителия дыхательных путей.

В. Базофилы и тучные клетки секретируют медиаторы — гистамин, лейкотриены, простагландины, фактор активации тромбоцитов, — которые повышают проницаемость сосудов и участвуют в воспалении (см. гл. 2, п. I.Г). Базофилы циркулируют в крови, время их жизни составляет всего несколько суток. Тучные клетки, которых значительно больше, чем базофилов, находятся в тканях. Базофилы и тучные клетки несут на своей поверхности рецепторы IgE и играют важнейшую роль в аллергических реакциях немедленного типа.

cyber
Оцените автора
CyberLesson | Быстро освоить программирование Pascal и C++. Решение задач Pascal и C++
Добавить комментарий