История создания и основные положения клеточной теории
Значение гистологии и ее задачи
Гистология – наука о строении тканей организма на микроскопическом уровне. Histos в переводе с греческого – ткань, а logos – учение. Развитие этой науки стало возможным с изобретением микроскопа. Во второй половине XVII века, благодаря усовершенствованию микроскопа и техники изготовления срезов, удалось заглянуть в тонкое строение тканей. Каждое исследование различных органов и тканей животных было открытием. Микроскопирование в биологии используется уже более 300 лет.
С помощью гистологии разрабатываются не только фундаментальные проблемы, но и решаются прикладные задачи, важные для ветеринарии и зоотехнии. Большое влияние на рост, развитие и формирование продуктивных качеств животных оказывает состояние их здоровья. Болезни приводят к морфологическим и функциональным изменениям в клетках, тканях и органах. Познание этих изменений необходимо для установления причины заболевания животных и успешного их лечения. Поэтому гистология тесно связана с патанатомией и широко используется в диагностике заболеваний.
Курс гистологии включает:
Цитологию – учение о структуре и функциях клетки и эмбриологию – учение о формировании и развитии тканей и органов в эмбриональный период (от оплодотворенной яйцеклетки до рождения или вылупления из яйца).
Мы начинаем с цитологии.
Клетка – элементарная структурная единица организма, составляющая основу его жизнедеятельности. Она обладает всеми признаками живого: раздражимостью, возбудимостью, сократимостью, обменом веществ и энергии, способностью к размножению, хранением генетической информации и передачей ее поколениям.
С помощью электронного микроскопа изучена тончайшая структура клеток, а использование гистохимических методов позволило определить функциональное значение структурных единиц.
История создания и основные положения клеточной теории
Клеточная теория:
Термин «клетка» впервые был применен Робертом Гуком в 1665 году, обнаружившем под микроскопом клеточное строение у растений. Но значительно позднее, уже в XIX век была разработана клеточная теория. Клеточное строение растений и животных изучали многие ученые, но они не обратили внимания на общность их структурной организации.
Честь создания клеточной теории принадлежит немецкому ученому Шванну (1838-39 гг.). Анализируя свои наблюдения клеток животных и сопоставляя с аналогичными исследованиями растительных тканей, проводимых Шлейденом, он пришел к выводу, что в основе строения как растительных, таки животных организмов лежат клетки. Важную роль в развитии клеточной теории Шванна имели труды Вирхова и других ученых.
Клеточная теория в ее современном виде включает следующие положения:
- Клетка – это наименьшая единица живого, из которой строятся органы и ткани.
- Клетки различных органов различных организмов гомологичны по своему строению, т.е. имеют общий принцип строения: содержат цитоплазму, ядро, основные органеллы.
- Размножение клеток происходит только путем деления исходной клетки.
- Клетки – как части целого организма специализированы: имеют определенную структуру, выполняют определенные функции и взаимосвязаны в функциональных системах тканей, органов и системах органов.
К числу неклеточных структур относят симпласты и синцитий. Они возникают либо от слияния клеток, либо в результате деления ядра без последующего разделения цитоплазмы. Примером симпластов являются мышечные волокна, примером синцития – сперматогонии – первичные половые клетки, соединенные перемычками.
Таким образом, многоклеточный организм животного представляет собой сложный ансамбль клеток, объединенных в систему тканей и органов, и связанных между собой межклеточным веществом.
Морфология клетки
Формы и размеры клеток разнообразны и определяются выполняемой функцией. Встречаются клетки округлые или овальные (клетки крови); веретеновидные (гладкая мышечная ткань); плоские, кубические, цилиндрические (эпителий); отросчатые (нервная ткань), что позволяет на расстоянии проводить импульсы.
Размеры клеток колеблются от 5 до 30 мкм; яйцеклетки у млекопитающих достигают 150-200 мкм.
Межклеточное вещество представляет собой продукт жизнедеятельности клеток и состоит из основного аморфного вещества и волокон.
Несмотря на различное строение и функции, все клетки имеют общие признаки и составные части. Компоненты клетки можно представить такой схемой:
КЛЕТКА
цитоплазма ядро плазмолемма
гиалоплазма органеллы включения
мембранные немембранные
Плазмолемма – поверхностный аппарат клетки, осуществляет регуляцию взаимоотношений клетки с окружающей средой и участвует в межклеточных взаимодействиях. Плазмолемма выполняет несколько важных функций:
- Разграничительную (ограничивает клетку и обеспечивает связь с окружающей средой).
- Транспортную – осуществляет: а) пассивный перенос путем диффузии и осмоса воды, ионов и низкомолекулярных веществ.
б) активный перенос веществ – ионов Na с затратой энергии.
в) эндоцитоз (фагоцитоз) – твердые вещества; жидкие – пиноцитоз.
3. Рецепторную – в плазмолемме имеются структуры для спецефического узнавания веществ (гормонов, лекарств и др.)
Плазмолемма построена по принципу биологических мембран. Имеет двухслойную липидную основу (билипидный слой), в которую погружены белки. Липиды представлены фосфолипидами и холестерином. Белки к билипидному слою прочно не фиксируются и плавают подобно айсбергам. Белки, пронизывающие два слоя липидов, называются интеральными, доходящие до половины бислоя – полуинтегральными, лежащие на поверхности – поверхностными или периферическими. Интегральные и полуинтегральные белки стабилизируют мембрану (структурные) и формируют транспортные пути. С поверхностными белками связаны цепи полисахаридов, образуя надмембранный слой (гликокаликс). Этот слой участвует в ферментном расщеплении различных соединений и взаимодействует с окружающей средой.
Со стороны цитоплазмы имеется субмембранный комплекс, являющийся опорно-сократительным аппаратом. В этой зоне обнаруживаются многочисленные микрофиламенты и микротрубочки. Все части плазмолеммы взаимосвязаны и работают как единая система.
В некоторых клетках для интенсификации транспортных процессов в определенных участках формируются многочисленные ворсинки, а для перемещения различных веществ (пылинок, микробов) появляются реснички.
Клеточные оболочки формируют межклеточные контакты. Основными формамиконтактов являются:
1. Простой контакт (клетки соприкасаются надмембранными слоями).
2. Плотный (замыкающий контакт), когда внешние слои плазмолеммы двух клеток сливаются в одну общую структуру и изолирует межклеточное пространство от внешней среды, и оно становится непроницаемым для макромолекул и ионов.
Разновидностью плотного контакта являются пальцевидные соединения и десмосомы. В межклеточном пространстве формируется центральная пластинка, которая связана с оболочками контактирующих клеток системой поперечных фибрилл. Со стороны подмембранного слоя десмосомы укрепляются компонентами цистоскелета. В зависимости от протяженности различают точечные и опоясывающие десмосомы.
3. Щелевидные контакты (межклеточное пространство очень узкое и между цитоплазмами клеток, пронизывая плазмолеммы, формируются каналы, по которым осуществляется движение ионов из одной клетки в другую.
На этом основана работа электрических синапсов в нервной ткани.
Такой тип соединения встречается во всех группах тканей.
Цитоплазма
Цитоплазма состоит из основного вещества гиалоплазмы и находящихся в ней структурных компонентов – органелл и включений.
Гиалоплазма представляет собой коллоидную систему и имеет сложный химический состав (белки, нуклеиновые кислоты, аминокислоты, полисахариды и другие компоненты). Она обеспечивает транспортные функции, взаимосвязь всех структур клетки и откладывает запас веществ в виде включений. Из белков (тубулина) формируются микротрубочки, входящие в состав центриолей; базальных телец ресничек.
Органоиды – это структуры, постоянно находящиеся в клетке и выполняющие определенные функции. Их разделяют на мембранные и немембранные. К мембранным относятся:митохондрии, эндоплазматическая сеть, комплекс Гольджи, лизосомы и пероксисомы. К немембранным относятся:рибосомы, цитоскелет клетки (включает микротрубочки, микрофиламенты и промежуточные филаменты) и центриоли. Большинство органоидов общего значения, встречающихся во всех клетках органов. Но в некоторых тканях есть специализированные органоиды. Так в мышцах – миофиламенты, в нервной ткани – нейрофиламенты.
Рассмотрим морфологию и функции отдельных органелл:
Предыдущая12345678910111213141516Следующая
Дата добавления: 2016-11-02; просмотров: 214;
ПОСМОТРЕТЬ ЕЩЕ:
Поиск Лекций
Значение клеточной теории
Вопрос 1
Клеточная теория: история и современное состояние. Значение клеточной теории для биологии и медицины.
Клеточная теория сформирована немецким исследователем – зоологом Т.
Шванном(1839). В своих теоритических построениях он опирался на работы ботаника М. Шлейдена (считается соавтором теории). Исходя от предположения об общей природе растительных и животных клеток (одинаковый механизм происхождения ).
Шванн обобщил многочисленные данные в виде теории. В конце прошлого столетия клеточная теория получила дальнейшее развитие в работах Р. Вирхова
Основные положения клеточной теории:
1. Клетка элементарная единица живого, вне клетки жизни нет.
Клетка единая система, включающая множество закономерно связанных с друг другом элементов (современная трактовка).
2. Клетки гомологичны по строению и основным свойствам.
Клетки увеличиваются в числе путем деления исходной клетки, после удвоения его генетического материала.
4. Многоклеточные организмы представляют собой новую систему взаимосвязанных между собой клеток, объединенных и интегрированных в единую систему тканей и органов с помощью нервной и гуморальной регуляции.
5. Клетки организма тотатипентны так как обладают генетическим потенциалом всех клеток данного организма, но отличаются друг от друга экспрессией гена.
Значение клеточной теории
Клеточная теория позволила понять как зарождается, развивается и функционирует живой организм, то есть создала основу эволюционной теории развития жизни, а в медицине – понимания процессов жизнедеятельности и развития болезней на клеточном уровне – что открыло немыслимые ранее новые возможности диагностики, лечение заболеваний.
Cтало ясно, что клетка — важнейшая составляющая часть живых организмов, их главный морфофизиологический компонент.
Клетка — это основа многоклеточного организма, место протекания биохимических и физиологических процессов в организме.
На клеточном уровне в конечном итоге происходят все биологические процессы. Клеточная теория позволила сделать вывод о сходстве химического состава всех клеток, общем плане их строения, что подтверждает филогенетическое единство всего живого мира.
Вопрос 2
Прокариотические и эукариотические клетки.
Прокариотическая клетка (доядерные – 3,5 млрд лет назад) – это наиболее примитивные, очень просто устроенные, сохраняющие черты глубокой древности организмы.(одноклеточные живые организмы не обладающие оформленным клеточным ядром и другими внутренними мембранными органоидами).
Малые размеры клеток
2. Нуклеоид – аналог ядра. Замкнутая кольцевая ДНК.
3. Отсутствуют мембранные органеллы
4. Нет клеточного центра
5. Клеточная стенка особого строения, слизистая капсула.
6. Размножение делением пополам (может происходить обмен генетической информацией).
Нет циклоза, экзо- и эндоцитоза.
Биология и медицина
Разнообразие обмена веществ
9. Размер не более 0,5-3 мкм.
10. Тип питания осмотический.
11. Наличие жгутиков плазмид, и газовых вакуолей.
12. Размер рибосом 70s
Эукариотическая клетка(ядерные – 1,5-2 млрд лет назад) –надцарство живых организмов, клетки которых содержат ядра:
Животные
2. Растения
3. Грибы
Поверхностный аппарат:
-надмембранный комплекс
-биомембрана (плазмалемма, цитолемма)
— субмембрана
Ядерный аппарат:
-кариолемма (ядерная оболочка)
-кариоплазма
-ядрышко
-хроматин(хромосома)
Цитоплазматический аппарат:
-цитозоль (гиалоплазма)
-органеллы
-включения
Вопрос 3
Согласно жидкостно-мозаичной модели структуры мембраны, предложенной Сингером, биологическая мембрана представляет собой два параллельных слоя липидов (бимолекулярный слой, липидный бислой).
Мембранные липиды имеют гидрофобную (углеводородные остатки жирных кислот и др.) и гидрофильную (фосфат, холин, коламин, сахар и т.п.) части. Такие молекулы образуют в клетке бимолекулярные слои: гидрофобные части их повернуты дальше от водного окружения, т.е. друг к другу, и удерживаются вместе сильными гидрофобными взаимодействиями и слабыми силами Лондона-Ван-дер-Ваальса. Таким образом, мембраны на обеих наружных поверхностях гидрофильны, а внутри – гидрофобны.
Поскольку гидрофильные части молекул поглощают электроны, они видны в электронном микроскопе как два темных слоя. При физиологических температурах мембраны находятся в жидкокристаллическом состоянии: углеводородные остатки вращаются вдоль своей продольной оси и диффундируют в плоскости слоя, реже перескакивают из одного слоя в другой, не нарушая прочных гидрофобных связей.
Чем большую долю составляют ненасыщенные жирные кислоты, тем ниже температура фазового перехода (точка плавления) и тем более жидкой бывает мембрана. Более высокое содержание стеролов с их жесткими гидрофобными молекулами, лежащими в гидрофобной толще мембраны, стабилизирует мембрану (главным образом у животных). В мембрану вкраплены различные мембранные белки. Некоторые из них находятся на внешней или на внутренней поверхности липидной части мембраны; другие пронизывают всю толщу мембраны насквозь.
Мембраны полупроницаемы; они обладают мельчайшими порами, через которые диффундируют вода и другие небольшие гидрофильные молекулы. Для этого используются внутренние гидрофильные области интегральных мембранных белков или отверстия между соприкасающимися интегральными белками (туннельные белки)
Функции биомембран
1. Ограничение и обособление клеток и органелл.
Обособление клеток от межклеточной среды обеспечивается плазматической мембраной, защищающей клетки от механического и химического воздействий. Плазматическая мембрана обеспечивает также сохранение разности концентраций метаболитов и неорганических ионов между внутриклеточной и внешней средой
Контролируемый транспорт метаболитов и ионов определяет внутреннюю среду, что существенно для гомеостаза, т.е. поддержания постоянной концентрации метаболитов и неорганических ионов, и других физиологических параметров. Регулируемый и избирательный транспорт метаболитов и неорганических ионов через поры и посредством переносчиков становится возможным благодаря обособлению клеток и органелл с помощью мембранных систем.
Восприятие внеклеточных сигналов и их передача внутрь клетки а также инициация сигналов.
4. Ферментативный катализ. В мембранах на границе между липидной и водной фазами локализованы ферменты. Именно здесь происходят реакции с неполярными субстратами. Примерами служат биосинтез липидов и метаболизм неполярных ксенобиотиков В мембранах локализованы наиболее важные реакции энергетического обмена, такие, как окислительное фосфорилирование и фотосинтез
Контактное взаимодействие с межклеточным матриксом и взаимодействие с другими клетками при слиянии клеток и образовании тканей.
6. Заякоривание цитоскелета , обеспечивающее поддержание формы клеток и органелл и клеточной подвижности
Вопрос 4
Мембранные липиды.
Принципы формирования бислоя. Липиды мембран
Состав липидов биологических мембран очень разнообразен. Характерными представителями липидов клеточных мембран являются фосфолипиды, сфингомиелины и холестерин (стероидный липид).
Характерной особенностью мембранных липидов является разделение их молекулы на две функционально различные части: не полярные, не несущие зарядов хвосты, состоящие из жирных кислот, и заряженные полярные головки. Полярные головки несут на себе отрицательные заряды или могут быть нейтральными.
Наличие неполярных хвостов объясняет хорошую растворимость липидов в жирах и органических растворителях. В эксперименте, смешивая с водой выделенные из мембран липиды можно получить бимолекулярные слои или мембраны толщиной около 7,5 нм, где периферические зоны слоя — это гидрофильные полярные головки, а центральная зона — незаряженные хвосты молекул липидов.
Такое же строение имеют все естественные клеточные мембраны. Клеточные мембраны сильно отличаются друг от друга по составу липидов. Например, плазматические мембраны клеток животных богаты холестерином (до 30%), и в них мало лецитина, в то время как мембраны митохондрий богаты фосфолипидами и бедны холестерином.
Липидные молекулы могут перемещаться вдоль липидного слоя, могут вращаться вокруг своей оси, а также переходить из слоя в слой. Белки, плавающие в «липидном озере», тоже обладают некоторой латеральной подвижностью. Состав липидов по обе стороны мембраны различен, что определяет асимметричность в строении билипидного слоя.
Вопрос 5
Мембранные белки имеют пересекающие клеточную мембрану домены, но части их выступают из мембраны в межклеточное окружение и цитоплазму клетки.
Выполняют функцию рецепторов, т.е. осуществляют передачу сигналов, а также обеспечивают трансмембранный транспорт различных веществ. Белки-транспортеры специфичны, каждый из них пропускает через мембрану только определенные молекулы или определенный тип сигнала.
Классификация:
1. Топологические (поли-, монотопические)
2. Биохимические (интегральные и периферические)
Топологические:
1) политопические, или трансмембранные белки, пронизывающие бислой насквозь и контактирующие с водной средой по обеим сторонам мембраны.
2) Монотопические белки постоянно встроены в липидный бислой, но соединены с мембраной только на одной стороне, не проникая на противоположную.
Биохимические:
1) интегральные прочно встроены в мембрану и могут быть увлечены из липидного окружения только с помощью детергентов или неполярных растворителей
2) периферические белки, которые высвобождаются в сравнительно мягких условиях (например путем солевого раствора)
Вопрос 6
Организация надмембранного комплекса у клеток разных типов.
Гликокаликс.
Надмембранный комплекс | бактерии | растения | животные | грибы |
1) слизистая капсула | + | +- | — | — |
2)клеточная стенка (оболочка) | + Из муреина | + Из целлюлозы | _ | + Из хитина |
3) гликокаликс | — | — | + | — |
У грамположительных бактерий есть однослойная, толщиной 70-80 нм.
клеточная стенка, образованная сложным белково-углеводным комплексом молекул (пептидогликаны). Это система длинных полисахаридных (углеводных) молекул, связанных между собой короткими белковыми мостиками. Они располагаются в несколько слоев параллельно поверхности бактериальной клетки.
Все эти слои пронизаны молекулами сложных углеводов – тейхоевых кислот.
У грамотрицательных бактерий клеточная стенка более сложная и имеет двойную структуру. Над первичной, плазматической мембраной, строится еще одна мембрана и скрепленная с ней пептидгликанами.
Основным компонентом клеточной стенки растительных клеток является сложный углевод – целлюлоза.
Прочность их очень велика и сравнима с прочностью стальной проволоки. Слои макрофибрилл располагаются под углом друг к другу, создавая мощный многослойный каркас.
Гликокаликс.
Эукариотические клетки животных не образуют клеточных стенок, но на поверхности их плазматической мембраны есть сложный мембранный комплекс – гликокаликс.
Он образован системой периферических белков мембраны, углеводными цепями мембранных гликопротеинов и гликолипидов, а также надмембранными участками интегральных белков, погруженных в мембрану.
Гликокаликс выполняет ряд важных функций: он участвует в рецепции молекул, содержит молекулы межклеточной адгезии, отрицательно заряженные молекулы гликокаликса создают электрический заряд на поверхности клеток.
Определенный набор молекул на поверхности клеток является своеобразным маркером клеток, определяя их индивидуальность и узнаваемость сигнальными молекулами организма. Это свойство имеет очень большое значение в работе таких систем как: нервная, эндокринная, иммунная. В ряде специализированных клеток (например: во всасывающих клетках кишечного эпителия) гликокаликс несет основную функциональную нагрузку в процессах мембранного пищеварения
Вопрос 7
©2015-2018 poisk-ru.ru
Все права принадлежать их авторам.
Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Нарушение авторских прав и Нарушение персональных данных
Краткая история цитологии
Цитология (греч. citos – клетка, logos – наука) – наука о клетке.
В настоящее время учение о клетке является во многих отношениях центральным объектом биологических исследований.
Предпосылкой для открытия клетки явилось изобретение микроскопа и его использование для исследования биологических объектов.
Первый световой микроскоп сконструировали в Голландии в 1590 году два брата, Ганс и Захариус Янссены, шлифовальщики линз.
Долгое время микроскоп использовался как забава, игрушка для развлечения знатных особ.
|
|
Первые упоминания о клетке появились в XVII веке, когда в 1665 году английский ученый Роберт Гук, рассматривая под микроскопом срез пробки, обнаружил, что она состоит из ячеек или полостей, напоминающих пчелиные соты, которые он назвал клетками (от греч.
kytos – полость, лат. – cellula).
|
|||
Термин «клетка» утвердился в биологии, несмотря на то, что Роберт Гук наблюдал, в действительности, не клетки, а только целлюлозные оболочки растительных клеток.
Кроме того, клетки не являются полостями. В дальнейшем клеточное строение многих частей растений видели и описали М. Мальпиги, Н. Грю, а также А. Левенгук.
Важным событием в развитии представлений о клетке была изданная в 1672году книга Марчелло Мальпиги «Анатомия растений», где приводилось подробное описание микроскопических растительных структур.
В своих исследованиях Мальпиги убедился, что растения состоят из клеток, которые он называл «мешочками» и «пузырьками».
Среди блестящей плеяды микроскопистов XVII века одно из первых мест занимает А.
Левенгук, голландский купец, который завоевал себе славу учёного. Он прославился созданием линз, которые давали увеличение в 100-300 раз. В 1674 году Антонио ван Левенгук открыл с помощью собственноручно изобретенного микроскопа одноклеточных простейших, названных им «микроскопическими животными», бактерии, дрожжи, клетки крови – эритроциты, половые клетки – сперматозоиды, которые Левенгук называл «анималькули».
Из животных тканей Левенгук изучал и точно описал строение сердечной мышцы. Он был первым натуралистом, наблюдавшим клетки животногоорганизма.
Это пробудило интерес к изучению живого микромира.
Как наука цитология возникла лишь в XIX веке. В это время были сделаны важные открытия.
В 1830 году чешский исследователь Ян Пуркинье описал вязкое студенистое вещество внутри клетки и назвал его протоплазмой (гр.
protos – первый, plasma – образование).
В 1831 году шотландский ученый Роберт Броуноткрыл ядро.
В 1836 году Габриелем Валентини в ядре было обнаружено ядрышко.
![]() |
|||
![]() |
|||
В 1838 году была опубликована работа Матиаса Шлейдена «Данные о фитогенезисе», где автор, опираясь на уже имевшиеся в ботанике представления о клетке, выдвинул идею об идентичности растительных клеток с точки зрения их развития.
Он пришёл к выводу, что закон клеточного строения справедлив для растений.
В 1839 году вышла в свет ставшая классической книга Теодора Шванна «Микроскопические исследования о соответствии в структуре и росте животных и растений».
В ней автор сделал окончательный вывод о том, что клетка является структурной единицей жизнедеятельности и развития растений и животных.
В 1838 – 1839 годах немецкие ученые Матиас Шлейден и ТеодорШванн независимо друг от друга сформулировали клеточную теорию.
КЛЕТОЧНАЯ ТЕОРИЯ:
1) все живые организмы (растения и животные) состоят из клеток;
2) клетки растений и животных сходны по строению, химическому составу и выполняемым функциям.
М.
Шлейден и Т. Шванн считали, что клетки в организме возникают путём новообразования из первичного неклеточного вещества.
В 1858 году немецкий учёный-анатом Рудольф Вирховв своей книге «Целлюлярная патология» опроверг это представление и доказал, что новые клетки всегда возникают из предшествующих путем деления – «клетка от клетки, всё живое только из клетки» – (omnis cellula a cellula).
Важным обобщением Р.Вирхова явилось утверждение, что наибольшее значение в жизнедеятельности клеток имеют не оболочки, а их содержимое – протоплазма и ядро. Опираясь на клеточную теорию, Р. Вирхов поставил на научную основу учение о болезнях.
Клеточная теория
Опровергнув господствующее в то время представление, согласно которому в основе болезней лежит только изменение состава жидкостей организма (крови, лимфы, желчи), он доказал огромное значение изменений, происходящих в клетках и тканях. Р. Вирхов установил: «Всякое болезненное изменение связано с каким-то патологическим процессом в клетках, составляющих организм».
Это утверждение стало основой для появления важнейшего раздела современной медицины – патологической анатомии.
Вирхов был одним из основоположников исследования явлений жизнедеятельности на клеточном уровне, что является его бесспорной заслугой. Однако при этом он недооценивал исследования тех же явлений на уровне организма как целостной системы.
В представлении Вирхова организм – это государство клеток и все его функции сводятся к сумме свойств отдельных клеток.
В преодолении этих односторонних представлений об организме большое значение имели работы И.М.Сеченова, С.П.Боткина и И.П.Павлова. Отечественные ученые доказали, что организм представляет собой по отношению к клеткам высшее единство.
Клетки и другие структурные элементы, составляющие тело, не обладают физиологической самостоятельностью. Их формирование и функции координируются и управляются целостным организмом с помощью сложной системы химической и нервной регуляции.
Коренное улучшение всей техники микроскопирования позволило исследователям к началу XX столетия обнаружить основные клеточные органоиды, выяснить строение ядра и закономерности клеточного деления, расшифровать механизмы оплодотворения и созревания половых клеток.
В 1876 году Эдуард Ван Бенеден установил наличие клеточного центра в делящихся половых клетках.
В 1890 году Рихард Альтман описал митохондрии, назвав их биобластами, и выдвинул идею о возможности их самовоспроизведения.
В 1898 году Камилло Гольджи открыл органоид, названный в его честь комплексом Гольджи.
В 1898 году хромосомы впервые были описаны Карлом Бенда.
Крупный вклад в развитие учения о клетке во второй половине XIX – начале XX вв.
внесли отечественные цитологи И.Д.Чистяков (описание фаз митотического деления), И.Н.Горожанкин (изучение цитологических основ оплодотворения у растений), С.Г.Навашин, открывший в 1898г. явление двойного оплодотворения у растений.
Успехи в изучении клетки привели к тому, что внимание биологов все больше концентрировалось на клетке как основной структурной единице живых организмов.
Качественный скачок в цитологии произошел в XX веке. В 1932году МаксКнолль иЭрнст Руска изобрели электронный микроскоп, дающий увеличение в 106 раз. Были обнаружены и описаны невидимые в световой микроскоп микро- и ультрамикроструктуры клетки.
С этого момента клетку начали изучать на молекулярном уровне.
Таким образом, достижения цитологии всегда связаны с усовершенствованием техники микроскопирования.
Предыдущая123456789Следующая
Дата добавления: 2016-02-16; просмотров: 2539;
ПОСМОТРЕТЬ ЕЩЕ:
История развития понятий о клетке. Клеточная теория
Клеточная теория — это обобщенные представления о строении клеток как единиц живого, об их размножении и роли в формировании многоклеточных организмов.
Появлению и формулированию отдельных положений клеточной теории предшеств