Какая структура координирует процессы в клетке?
- 1) рибосома
- 2) митохондрия
- 3) ЭПС
- 4) ядро
Липидные (жировые) капли
Растение, как и всякий живой организм, состоит из клеток, причем каждая клетка порождается тоже клеткой.
Клетка — это простейшая и обязательная единица живого, это его элемент, основа строения, развития и всей жизнедеятельности организма.
Существуют растения, построенные из одной единственной клетки.
К ним относятся одноклеточные водоросли и одноклеточные грибы. Обычно это микроскопические организмы, но есть и довольно крупные одноклеточные (длина одноклеточной морской водоросли ацетабулярии достигает 7 см).
Большинство растений, с которыми мы сталкиваемся в повседневной жизни,— это многоклеточные организмы, построенные из большого числа клеток.
Запасные продукты — это вещества, временно выключенные из обмена веществ.
Они расходуются на построение тела растения или на различные жизненные процессы как энергетический материал. Местом отложения их служат вакуоли и цитоплазма.
В вакуолях запасные продукты накапливаются в виде растворов, в цитоплазме — в виде оформленных включений: алейроновых, крахмальных зерен, капель жирного масла и др. Алейроновые зерна — это гранулы запасного белка.
Они обычно образуются в клетках запасающей ткани зрелых семян.
Запасные продукты
— это вещества, временно выключенные из обмена веществ. Они расходуются на построение тела растения или на различные жизненные процессы как энергетический материал. Местом отложения их служат вакуоли и цитоплазма.
Вакуоли (рис.1) — полости в протопласте эукариотических клеток. У растений вакуоли — производные эндоплазматической сети , ограниченные мембраной – тонопластоми заполненные водянистым содержимым — клеточным соком.
Протопласт — активное содержимое растительной клетки. Основной компонент протопласта — белок . У большинства зрелых растительных клеток центральную часть занимает крупная, заполненная клеточным соком вакуоль , главное содержимое которой — вода с растворенными в ней минеральными и органическими веществами.
Клеточная оболочка и вакуоль представляют собой продукты жизнедеятельности протопласта .
Большую часть протопласта растительной клетки занимает цитоплазма , меньшую по массе — ядро . От вакуоли протопласт отграничен мембраной, называемой тонопластом , от клеточной стенки — другой мембраной — плазмалеммой .
В протопласте осуществляются все основные процессы клеточного метаболизма.
По- видимому, существенную роль в образовании вакуолей имеет деятельность аппарата Гольджи .
Функции вакуолей :
1)Они формируют внутреннюю водную среду клетки, и с их помощью осуществляется регуляция водно-солевого обмена.
2)Поддержание тургорного гидростатического давления внутриклеточной жидкости в клетке.
3) Обеспечение роста клетки. В молодых делящихся растительных клетках вакуоли представляют систему канальцев и пузырьков (провакуоли), по мере роста клеток они увеличиваются, а затем сливаются в одну большую центральную вакуоль.
Она занимает от 70 до 90 % объёма клетки, в то время как протопласт располагается в виде тонкого постенного слоя.
3Накопление запасных веществ и «захоронение» отбросов, т.е. конечных продуктов метаболизма клетки. Иногда вакуоли разрушают токсичные или ненужные клетке вещества. Обычно это выполняется специальными небольшими вакуолями, содержащими соответствующие ферменты.
Такие вакуоли получили название лизосомных .
В вакуолях запасные продукты накапливаются в виде растворов, в цитоплазме — в виде оформленных включений: алейроновых, крахмальных зерен, капель жирного масла и др.
Алейроновые зерна — это гранулы запасного белка. Они обычно образуются в клетках запасающей ткани зрелых семян.(рис.2)
При формировании семян в мелких вакуолях накапливается белок. В созревающих семенах вакуоли теряют воду и превращаются в алейроновые зерна.
При прорастании семян, когда они обогащаются водой, алейроновые зерна вновь преобразуются в вакуоли.
Алейроновые зерна имеют округлую форму, диаметр их колеблется от 0,2 до 20 мкм. Снаружи они покрыты мембраной.
У простых алейроновых зерен белок находится в виде аморфной массы (бобовые, кукуруза, рис), у сложных — в аморфную массу включен один, реже 2—3 белковых кристалла и небольшое округлое тельце — глобоид, содержащее запасной фосфор. Белковые тела могут образовываться и в других частях клетки — в ядре, пластидах, митохондриях, эндоплазматическом ретикулуме.
Алейроновые зёрна имеют округлую форму ,диаметр их колеблется от 0,2 до 20 мкм. Снаружи они покрыты мембраной.
У простых алейроновых зёрнах белок находится в виде аморфной массы (бобовые, кукуруза, рис),у сложных – в аморфную массу вкючен один, реже 2-3 белковых кристалла и небольшое округлое тельце – глобоид, содержащее запасной фосфор.
Крахмальные зерна
Зёрна крахмала в клетках картофельного клубня.
Главнейшее и наиболее распространенное из них — полисахарид крахмал . Крахмал злаков , клубней картофеля, ряда тропических растений — важнейший источник углеводов в рационе человека.В хлоропластах откладывается откладываются зёрна первичного крахмала.
Но здесь он не накапливается .При помощи ферментов первичный крахмал осахаривается и в виде глюкозы транспортируется из листа в другие органы.
Вторичное превращение сахара в крахмал происходит в лейкопластах (амилопластах).
Образование зерен вторичного крахмала начинается в определённых точках стромы амилопласта, называется образовательными центрами .
Рост крахмальных зерен происходит путем наложения новых слоев крахмала на старые, поэтому они имеют слоистую структуру. Смежные слои могут иметь различные показатели преломления и поэтому видны под микроскопом.
Слоистость бывает концентрической и эксцентрической.
С ростом крахмального зерна объём стромы амилопласта уменьшается, и в определённый момент слой ее становится настолько тонким ,что неразлечим под световым микроскопом.
Надо помнить, что двухмембранная оболочка и тонкий слой стромы всегда присутствует на поверхности зерна вторичного крахмала.
Если имеется один центр, вокруг которого откладываются слои крахмала, то возникает простое зерно, если два и более, то образуется сложное зерно, состоящее как бы из нескольких простых. Полусложное зерно формируется в тех случаях, когда крахмал сначала откладывается вокруг нескольких точек, а затем после соприкосновения простых зерен вокруг них возникают общие слои.
Расположение слоев может быть концентрическим или эксцентрическим, что также определяет особенности строения крахмальных зерен.
В химическом отношении крахмал представляет собой полисахарид, сходный с целлюлозой, построенный из сотен глюкозных остатков.
Первичный ассимиляционный крахмал образуется только в хлоропластах .
Ночью, когда фотосинтез прекращается, ассимиляционный крахмал ферментативно гидролизуется до сахаров и транспортируется в другие части растения.
В запасающих тканях различных органов, особенно в клубнях, луковицах, корневищах и др., в особом типе лейкопластов — амилопластах часть сахаров откладывается в виде зерен вторичного крахмала .
Если в амилопласте имеется один образовательный центр ,то формируется простое зерно, если два и более – сложное зерно ,состоящее как бы из несколько простых.
Полусложное зерно образуется в том случае, если крахмал сначала откладывается вокруг нескольких образовательных центров, а затем после соприкосновения простых зёрен вокруг них возникают общие слои.
Размер крахмальных зёрен колеблется в больших пределах.
Так, у картофеля диаметр их достигает 100мкм, у пшеницы и ржи бывают мелкие зёрна диаметром2-9 мкм и крупные диаметром 30-45 мкм, у кукурузы – диаметром 5-30 мкм.
Форма, размер, структура крахмальных зёрен специфичны для каждого вида растения, а иногда и для сорта.
Это обстоятельство используют при анализе состава муки.
Липидные (жировые) капли
1-Алейроновое зерно;
2- Оболочка алейронового зерна ;
3-Глобоиды;
4-Липидные капли
Обычно располагаются в гиалоплазме и встречаются практически во всех растительных клетках.
Это основной тип запасных питательных веществ большинства растений.
Липидные капли встречаются практически во всех растительных клетках. Жирные масла накапливаются у огромного количества растений и по своему значению являются второй после крахмала формой запасных питательных веществ. Особенно богаты ими семена и плоды. Семена некоторых растений (подсолнечник, хлопчатник, арахис) могут содержать до 40% масла от массы сухого вещества.
Поэтому растительные жиры получают, главным образом, из семян.
Липидные капли накапливаются непосредственно в гиалоплазме. Они выглядят как мелкие сферические тела, каждая капля отделена от гиалоплазмы мембраной.
Иногда липидные капли называют сферосомами.
Реактивом на жирное масло является краситель судан III, липидные капли окрашиваются им в оранжево-красный цвет.
Запасные белки
Запасные белки относятся к категории простых белков – протеинов, в отличие от сложных белков – протеидов, составляющих основу протопласта. В наибольшем количестве они откладываются в запасающей ткани сухих семян в виде алейроновых зерен, или белковых телец.
Относятся к категории простых белков — протеинов в отличие от сложных белков — протеидов , составляющих основу протопласта .
Наиболее часто запасные белки откладываются в семенах. Очень богаты белками семена многих используемых в пищу и кормовых видов бобовых.
Иногда протеины обнаруживаются в ядре и гиалоплазме в виде трудно различимых в световой микроскоп кристаллоподобных структур. Однако чаще запасные белки накапливаются в вакуолях и выпадают в осадок при потере влаги в процессе созревания семян.
Обычно осаждающиеся белки образуют зерна округлой или эллиптической формы, называемые алейроновыми зернами . Если алейроновые зерна не имеют заметной внутренней структуры, их называют простыми.
Иногда же в алейроновых зернах среди аморфного белка заметны один или несколько кристаллоподобных структур (кристаллоидов), способных в отличие от настоящих кристаллов набухать в воде. Помимо кристаллоидов, в алейроновых зернах встречаются блестящие бесцветные тельца округлой формы — глобоиды.
Алейроновые зерна, содержащие кристаллоиды и глобоиды, называют сложными. У каждого вида растений они, подобно зернам крахмала, имеют определенную структуру.
Растения в отличие от животных не имеют специальных выделительных органов и нередко накапливают конечные продукты жизнедеятельности протопласта в виде солей оксалата или карбоната кальция.
Кристаллические включения в значительных количествах накапливаются в тканях и органах, которые растения периодически сбрасывают (листья, кора).
Они откладываются исключительно в вакуолях. Форма этих включений достаточно разнообразна: одиночные многогранники — стилоиды (палочковидные кристаллы), игольчатые кристаллы — рафиды, скопления множества мелких кристаллов — кристаллический песок, сростки кристаллов — друзы.
Форма кристаллов нередко специфична для определенных таксонов и иногда используется для их микродиагностики.
К кристаллическим включениям близки цистолиты. Они чаще всего состоят из карбоната кальция или кремнезема и представляют собой гроздевидные образования, возникающие на выступах клеточной оболочки, вдающейся внутрь клетки.
Цистолиты характерны для растений семейств крапивных, тутовыхи др.
Белковые включения можно окрасить реактивом Люголя в золотисто-желтый цвет.
По характеру все включения
— это продукты клеточного метаболизма.
Они накапливаются главным образом в форме гранул, капель и кристаллов. Химический состав включений очень разнообразен.
Липоиды обычно откладываются в клетке в виде мелких капель.
Большое количество жировых капель встречается в цитоплазме ряда простейших, например инфузорий. У млекопитающих жировые капли находятся в специализированных жировых клетках, в соединительной ткани. Часто значительное количество жировых включений откладывается в результате патологических процессов, например при жировом перерождении печени. Капли жира встречаются в клетках практически всех растительных тканей, очень много жира содержится в семенах некоторых растений.
Включения полисахаридов имеют чаще всего формулу гранул разнообразных размеров.
У многоклеточных животных и простейших в цитоплазме клеток встречаются отложения гликогена. Гранулы гликогена хорошо видны в световом микроскопе. Особенно велики скопления гликогена в цитоплазме поперечнополосатых мышечных волокон и в клетках печени, в нейронах. В клетках растений из полисахаридов наиболее часто откладывается крахмал. Он имеет вид гранул различной формы и размеров, причем форма крахмальных гранул специфична для каждого вида растений и для определенных тканей.
Отложениями крахмала богата цитоплазма клубней картофеля, зерен злаков; каждая крахмальная гранула состоит их отдельных слоев, а каждый слой, в свою очередь, включает радиально расположенные кристаллы, почти невидимые в световой микроскоп.
Белковые включения встречаются реже, чем жировые и углеводные. Белковыми гранулами богата цитоплазма яйцеклеток, где они имеют форму пластинок, шариков, дисков, палочек.
Белковые включения встречаются в цитоплазме клеток печени, клеток простейших и многих других животных.
К клеточным включениям относятся некоторые пигменты, например распространенный в тканях желтый и коричневый пигмент липофусцин, круглые гранулы которого накапливаются в процессе жизнедеятельности клеток, особенно по мере их старения. Сюда же относятся пигменты желтого и красного цвета — липохромы. Они накапливаются в виде мелких капель в клетках коркового вещества надпочечников и в некоторых клетках яичников.
Пигмент ретинин входит в состав зрительного пурпура сетчатки глаза. Присутствие некоторых пигментов связано с выполнением этими клетками особых функций. Примерами могут служить красный дыхательный пигмент гемоглобин в эритроцитах крови или пигмент меланин в клетках меланофорах покровных тканей животных.
В качестве включений во многих животных клетках присутствуют гранулы секрета, вырабатываемого в клетках разных типов, в первую очередь в железистых.
Секреторные включения могут быть белками, сахаридами, липопротеидами и т. д
Строение рибосом
Рибосомы являются важнейшими органоидами клетки, так как на них протекает процесс трансляции — синтез полипептида на матричной РНК (мРНК). Другими словами, рибосомы служат местом белкового синтеза.
Рибосомы относятся к немембранным органоидам. Они очень мелкие (около 20 нм), но многочисленные (тысячи и даже миллионы на клетку), состоят из двух частей – субъединиц.
В состав субчастиц входят рибосомальные РНК (рРНК) и рибосомные белки, т. е. рибосомы по химическому составу являются рибонуклеопротеидами.
Однако в них также присутствует небольшое количество низкомолекулярных соединений. Из-за многочисленности рибосом, рРНК составляет более половины от всей РНК клетки.
Одну из субъединиц называют «малой», вторую – «большой».
В собранной из субъединиц рибосоме выделят два (по одним источникам) или три (по другим) участка, которые называют сайтами.
Один из участков обозначают A (aminoacyl) и называют аминоацильным, второй — P (peptidyl) — пептидильный. Данные сайты являются основными каталитическими центрами протекающих на рибосомах реакций.
Третий участок обозначают E (exit), через него освободившаяся от синтезируемого полипептида транспортная РНК (тРНК), покидает рибосому.
Кроме перечисленных сайтов на рибосомах есть другие участки, используемые для связывания различных ферментов.
Когда субъединицы диссоциированы (разъединены) специфичность сайтов теряется, т. е. они определяются сочетанием соответствующих областей обеих субъединиц.
Отличие рибосом прокариот и эукариот
Соотношение по массе белков и РНК в рибосоме примерно поровну. Однако у прокариот белков меньше (около 40%).
Размеры как самих рибосом, так и субъединиц выражают в скорости их седиментации (осаждения) при центрифугировании.
При этом S обозначает константу Сведберга — единицу, характеризующую скорость оседания в центрифуге (чем больше S, тем быстрее частица осаждается, а значит тяжелее). У прокариот рибосомы имеют размер в 70S, а у эукариот — в 80S (т. е. они тяжелее и крупнее).
При этом субъединицы прокариотических рибосом имеют значения 30S и 50S, а эукариотических — 40S и 60S.
Размеры рибосом в митохондриях и хлоропластах эукариот сходны с прокариотическими (хотя имеют определенную вариабельность по размерам), что может указывать на их происхождение от древних прокариотических организмов.
У прокариот в состав большой субъединицы рибосом входит две молекулы рРНК и более 30 молекул белка, в состав малой — одна молекула рРНК и около 20 белков.
У эукариот в субъединицах больше молекул белка, а также в большой субъединице три молекулы рРНК.
Составляющие рибосому белки и молекулы рРНК обладают способностью к самосборке и в итоге образуют сложную трехмерную структуру. Структуру рРНК поддерживают ионы магния.
Синтез рРНК
У эукариот в состав рибосом входят 4 вида рРНК. При этом три образуются из одного транскрипта-предшественника — 45S рРНК.
Он синтезируется в ядрышке (на петлях хромосом его формирующем) при помощи РНК-полимеразы-1. Гены рРНК имеют много копий (десятки и сотни) и обычно располагаются на концах разных пар хромосом.
После синтеза 45S рРНК разрезается на 18S, 5.8S и 28S рРНК, каждая из которых подвергается тем или иным модификациям.
Четвертый вид рРНК синтезируется вне ядрышка с помощью фермента РНК-полимеразы-3. Это 5S РНК, которая после синтеза не нуждается в процессинге.
Третичная структура рРНК в составе рибосом очень сложная и компактная. Она служит каркасом для размещения рибосомных белков, которые выполняют вспомогательные функции для поддержания структуры и функциональности.
Функция рибосом
Функционально рибосомы являются местом связывания молекул, участвующих в синтезе (мРНК, тРНК, различные факторы).
Именно в рибосоме молекулы могут занять друг по отношению к другу такое положение, которое позволит быстро протечь химической реакции реакции.
В эукариотических клетках рибосомы могут находиться свободно в цитоплазме или быть прикрепленными с помощью специальных белков к ЭПС (эндоплазматическая сеть, она же ЭР — эндоплазматический ретикулум).
В процессе трансляции рибосома перемещается по мРНК.
Часто по одной нитевидной мРНК двигаются несколько (или множество) рибосом, образуя так называемую полисому (полирибосому).
Строение клетки – это очень важный раздел знаний по биологии, без которого невозможно говорить об усвоении дальнейших знаний, потому что клетка является наименьшей структурной единицей всего живого.
Поэтому без знания строения клетки, без понимания того, какие процессы и как происходят внутри нее и между клетками, невозможно знать и понимать принципы существования всего живого.
Клетки растений и животных обычно различаются между собой по строению, размерам и форме.
Но все они похожи по главным принципам жизнедеятельности, способностям к изменчивости, раздражимости, обмену веществ, росту и развитию. Структуры, которые имеется в каждой клетки и отвечают за процессы, происходящие в ней, называются органоиды.
Во всех клетках живой природы обязательно присутствуют три следующих составляющих:
1) Вещества, которое образуют поверхность клетки: клеточная оболочка, мембрана или цитоплазматическая оболочка;
2) Цитоплазма, которая имеет при себе целый набор разных структур (рибосомы, митохондрии и пластиды, клеточный центр, эндоплазматическая сеть, комплекс Гольджи), которые всегда есть в клетке, а также так называемые включения – временные образования в клетке.
3) Ядро – главная часть любой клетки.
Ядро содержит ядрышко, хромантин и ядерный сок. Отделено от цитоплазмы пористой мембраной.
Генетический материал клетки
Нуклеиновые кислоты
Нуклеиновые кислоты – органические вещества, продукт реакции поликонденсации нуклеотидов. Нуклеотиды состоят из остатка фосфорной кислоты, пентозы, азотистого основания. Выделяют два типа нуклеиновых кислот: рибонуклеиновая (РНК) и дезоксирибонуклеиновая (ДНК), которые различаются рядом признаков и свойств (табл. 1).
Важность выполняемых функций ДНК и РНК обусловлены особенностью строения молекул. Выяснить структуру ДНК удалось в 1953 году английским ученым Д. Уотсону и Ф. Крику.
Они показали, что ДНК состоит из двух полинуклеотидных цепей, закрученных в спираль вправо, обе цепи свиты вместе, образуя двойную спираль. Прочность молекуле ДНК придает взаимодействие с белками, образующими комплекс нуклеиновой кислоты и белка – нуклеопротеид.
Таблица 1 Сравнительная характеристика нуклеиновых кислот
Признак | ДНК | РНК |
Топография в ядре | Хроматиновые структуры, частично – ядрышко (ядрышковый хроматин) | Ядрышко, нуклеоплазма |
Топография в цитоплазме | Митохондрии, пластиды, плазмиды | Рибосомы, гранулярнаяЭПС,митохондрии, пластиды, гиалоплазма |
Пентоза | Дезоксирибоза | Рибоза |
Азотистое основание | Аденин, гуанин, цитозин, тимин | Аденин, гуанин, цитозин, урацил |
Структура макромолекулы | Двойная правозакрученная спираль | Более сложная и разнообразная |
Способность к самоудвоению | Обладает | Обладает (у РНК-содержащих вирусов) |
Химическая стабильность | Высокая | Сравнительно низкая |
Функции | Хранение и передача наследственной информации; управление процессами жизнедеятельности в клетке | РНК (генетическая функция у РНК-содержащих вирусов); иРНК – перенос информации от структурных генов к белкам; рРНК – структурная функция; тРНК – связывание аминокислот, их транспорт к рибосомам; мяРНК – участие в подготовке иРНК к синтезу белка |
Молекула РНК состоит из одной цепи и имеет небольшие размеры.
Существует четыре основных вида РНК: информационная РНК (иРНК), рибосомная РНК (рРНК), транспортная РНК (тРНК), малая ядерная РНК (мяРНК).
Хромосомы
В клеточных организмах ДНК содержится в специальных нуклеопротеидных комплексах – хромосомах. В состоянииделения ядерные кислоты образуют особые органоиды –хромосомы, ядерное вещество становитсяхроматиновым(способным к окрашиванию).
Бактериальная хромосома содержит молекулу ДНК, свёрнутую в кольцо.
Эти кольца сверхспирализированы: двойная спираль, прежде чем её концы были соединены, была частично раскручена.
Такой эффект позволяет молекуле разместиться более компактно. Хромосомы эукариот представляют собой линейную молекулу ДНК. Эукариотическая ДНК обматывает белковые частицы – гистоны, располагающиеся вдоль ДНК через определённые интервалы.
Хромосомы имеют определенную форму: палочкообразную, разноплечную и равноплечную.
Тело хромосомы состоит из центромеры (центральной перетяжки) и двух плеч. У палочкообразных хромосом одно плечо очень большое, а второе – маленькое.
Число хромосом и их форма для каждого вида строго одинаково и является систематическим признаком. Известно, что в многоклеточных организмах различают два типа клеток по количеству хромосом –соматические (клетки тела) иполовые клетки (гаметы).
Число хромосом в соматических клетках в два раза больше, чем в половых клетках, такой набор хромосом называютдиплоидным (двойным) «2n», а количество хромосом в гаметах – гаплоидным (одинарным) «n». В соматических клетках содержится 2nхромосом, а в гаметах – n хромосом. Например, в соматических клетках тела человека содержится 46 хромосом, т.е. 23 пары. Половые клетки человека (яйцеклетки и сперматозоиды) содержат 23 хромосомы.
Парные (гомологичные) хромосомы имеют одинаковую форму и выполняют одинаковые функции: они несут информацию об одинаковых типах признаков. Такие хромосомы называют также аллельными.
Хромосомы, принадлежащие к разным парам гомологичных хромосом, называютсянеаллельными.
Хромосомы состоят из генов.Ген – участок молекулы ДНК, в котором содержится информация о структуре одной.
Хромосомы выполняют в клетке следующие функции:
1) хромосомы содержат наследственную информацию о признаках, присущих данному организму;
2) через хромосомы осуществляется передача наследственной информации потомству.
Митоз
Все клетки появляются путём деления родительских клеток.
В зависимости от механизма распределения хромосом по дочерним клеткам различают несколько типов деления клеток: митоз, мейоз, амитоз, эндомитоз.
Большинству клеток свойственен клеточный цикл, состоящий из двух основных стадий: интерфазы и митоза. Интерфаза – период между делениями (митозами), состоит из трех этапов (пресинтетического, синтетического и постсинтетического). В течение 4-8 часов после деления клетка увеличивает свою массу. Некоторые клетки (нервные клетки мозга) навсегда остаются в этой стадии – никогда не делятся. У других же в течение 6-9 часов удваивается хромосомная ДНК (синтез ДНК – основной процесс синтетического периода).
Когда масса клетки увеличивается в два раза, начинается митоз.
Митоз – (от греч. mitos – нить), способ деления ядер клеток, обеспечивающий равномерное распределение генетического материала между дочерними клетками. Митоз (непрямое деление) – основной способ деления соматических клеток эукариот. В типичной животной клетке митоз включает 4 этапа: профазу, метафазу, анафазу и телофазу.
В профазу центриоли удваиваются и расходятся к полюсам клетки.
Ядерная мембрана разрушается. Микротрубочки выстраиваются от одной центриоли к другой, образуя веретено деления. Концевые части хромосом разъединяются, но всё ещё остаются попарно сцепленными в области первичной перетяжки (центромеры).
В метафазе хромосомы, за счет нитей веретена деления, выстраиваются в экваториальной плоскости клетки.
Центромеры, удерживающие дочерние хромосомы, делятся, после чего хромосомы полностью разъединяются.
В стадии анафазы хромосомы перемещаются к полюсам клетки. Когда хромосомы достигают полюсов, начинается телофаза.