Цикл Кальвина что это: стадии, восстановление и регенерация

Цикл Кальвина

Восстановительный пентозофосфатный цикл, или цикл Кальвина, — серия биохимических реакций, осуществляемая при фотосинтезерастениями (в стромехлоропластов), цианобактериями, прохлорофитами и пурпурными бактериями, а также многими бактериями-хемосинтетиками, является наиболее распространённым из механизмов автотрофной фиксации CO2.

Цикл Кальвина назван в честь американского биохимика Мелвина Кальвина (1911—1997).

Часто используются альтернативные названия, указывающие на роль коллег Кальвина в открытии данного биохимического пути (например: цикл Кальвина-Бенсона или цикл Кальвина-Бенсона-Бассама).

Стадии

В цикл вовлекаются АТФ и НАДФ·Н, образованные в ЭТЦ фотосинтеза, углекислый газ и вода; основным продуктом является глицеральдегид-3-фосфат.

Поскольку АТФ и НАДФ·Н могут образовываться в разных метаболических путях, цикл не следует рассматривать строго привязанным к световой фазе фотосинтеза.

Общий баланс реакций цикла можно представить уравнением:

3 CO2 + 6 НАДФ·Н + 5 H2O + 9 АТФ → C3H7O3-PO3 + 3 H+ + 6 НАДФ+ + 9 АДФ + 8 Фн + 3 H2O

Две молекулы глицеральдегид-3-фосфата используются для синтеза глюкозы.

Цикл состоит из трёх стадий: на первой под действием ферментарибулозобисфосфат-карбоксилаза/оксигеназа происходит присоединение CO2 к рибулозо-1,5-дифосфату и расщепление полученной гексозы на две молекулы 3-фосфоглицериновой кислоты (3-ФГК).

На второй 3-ФГК восстанавливается до глицеральдегид-3-фосфата (фосфоглицеральдегида, ФГА), часть молекул которого выходит из цикла для синтеза глюкозы, а другая часть используется в третьей стадии для регенерации рибулозо-1,5-дифосфата.

Карбоксилирование

Карбоксилированиерибулозо-1,5-бисфосфата (5-углеродное соединение) осуществляется РиБисКО в несколько стадий.

На первой кетонная группа рибулозы восстанавливается до спиртовой, между 2 и 3 атомами углерода устанавливается двойная связь. Полученное соединение нестабильно и именно оно карбоксилируется с образованием 2-карбокси-3-кето-D-арабитол-1,5-бисфосфата. Его структурный аналог 2-карбокси-D-арабитол-1,5-бисфосфат ингибирует весь процесс.

Новое, уже 6-углеродное соединение, также нестабильно и распадается на две молекулы 3-фосфоглицериновой кислоты (3-фосфоглицерат, 3-ФГК).

Восстановление

Восстановление 3-фосфоглицериновой кислоты (3-ФГК) происходит в две реакции.

Сначала каждая 3-ФГК с помощью 3-фосфоглицераткиназы и с затратой одной АТФ фосфорилируется, образуя 1,3-бисфосфоглицериновую кислоту (1,3-бисфосфоглицерат).

Затем под действием глицеральдегид-1,3-фосфатдегидрогеназы бисфосфоглицериновая кислота восстанавливается НАД(Ф)·H (у растений и цианобактерий; у пурпурных и зелёных бактерий восстановителем является НАД·H) параллельно с отщеплением одного остатка фосфорной кислоты.

Образуется глицеральдегид-3-фосфат (фосфоглицеральдегид, ФГА, триозофосфат). Обе реакции обратимы.

Регенерация

На последней стадии 5 молекул глицеральдегид-3-фосфатов превращаются в три молекулы рибулозо-1,5-бисфосфата.

Вначале под действием трифосфат-изомеразы глицеральдегид-3-фосфат изомеризуется в дигидроксиацетон-фосфат. Фруктозабисфосфат-альдолаза объединяет их во фруктозо-6-фосфат с отщеплением остатка фосфорной кислоты.

Затем следует ряд реакций перестройки углеродных скелетов и образуется рибулозо-5-фосфат. Он фосфорилируется фосфорибулокиназой и рибулозо-1,5-бисфосфат регенерирует.[источник не указан 2801 день]

Открытие

С 1940-х гг. Мелвин Кальвин работал над проблемой фотосинтеза; к 1957 с помощью CO2, меченного по углероду, выяснил химизм усвоения растениями CO2 (восстановительный карбоновый цикл Кальвина) при фотосинтезе. Нобелевская премия по химии (1961).

Какие основные процессы происходят в темновую фазу фотосинтеза?

За световой фазой следует темновая фаза фотосинтеза, во время которой происходит синтез моносахаридов (глюкозы) из углекислого газа с затратой энергии АТФ и восстановительных эквивалентов (НАДФН). Синтез глюкозы является результатом целого ряда последовательных ферментативных реакций, которые назвали циклом Кальвина.

Как было сказано ранее в разделе «Кислородный этап энергетического обмена», в цикле Кребса в митохондриях от молекул органических кислот отрываются молекулы углекислого газа (CO2), промежуточные продукты цикла последовательно окисляются, отрываемые от них атомы водорода присоединяются к НАД+ (т.е. образуется НАДН). В цикле Кальвина происходит все наоборот, к молекулам субстрата присоединяется молекулы углекислого газа (СО2), и они восстанавливаются за счет НАДФН (т.е образуется НАДФ+).

Началом синтеза глюкозы является присоединение молекулы углекислого газа к молекуле пятиуглеродного сахара – рибулозо-1,5-бисфосфата.

При этом образуется шестиуглеродная молекула, которая сразу же распадается на две молекулы трехуглеродной фосфоглицериновой кислоты, которая восстанавливается до трехуглеродных сахаров с затратой АТФ и НАДФН. В результате их дальнейших перестроек и конденсаций образуются рибулозомонофосфат и глюкоза — конечный продукт фотосинтеза. Рибулозомонофосфат фосфорилируется АТФ до рибулозобисфостата, который вновь вступает в цикл Кальвина.

На образование одной молекулы глюкозызатрачивается 18 молекул АТФ и 12 молекул НАДФН, накопленных в процессе световой фазы фотосинтеза.

Следовательно, для темновой фазы фотосинтеза можно представить следующее общее уравнение:

6СО2 + 12НАДФН + 12Н+ + 18АТФ —> С6Н12О6 + 6Н2О + 12НАДФ+ + 18АДФ + 18Фн

Даже если учесть частичные потери энергии на различных стадиях темновой фазы, общий КПД фотосинтеза остается очень высоким и составляет приблизительно 60%.

У некоторых растений (например, сахарного тростника или кукурузы) процесс фотосинтеза идет вначале не через трехуглеродные, а через четырехуглеродные соединения.

Эти растения называются С4-растениями. В отличие от С3-растений им характерен быстрый рост и высокая эффективность фотосинтеза, который протекает даже при очень низких концентрациях углекислого газа. В этом случае углекислый газ присоединяется не к рибулозобисфосфату, а к одному из промежуточных продуктов гликолиза – фосфоенолпирувату.

В результате образуются четырехуглеродные яблочная или аспарагиновая кислоты, которые диффундируют в клетки обкладки сосудистых пучков, где от них отщепляется СО2, вступая в цикл Кальвина.

В этих клетках слабо выражено фотодыхание, связанное с окислением рибулозобисфосфата кислородом, поэтому энергозатраты на фотосинтез резко снижаются (на 50%).

В последние годы благодаря необычайно высокой биологической продуктивности С4-растения привлекают внимание ученых как потенциальный источник органического сырья.

Темновая фаза фотосинтеза

Темновая фаза фотосинтеза – это комплекс ферментативных реакций, во время которой происходит восстановление поглощенного углекислого газа за счет продуктов световой фазы (АТФ и НАДФН). Различают несколько циклов восстановления СО2.

Этот способ ассимиляции СО2 является основным и присущ всем растениям. Он был расшифрован американскими учеными во главе с М. Кальвином. В 1961 году М. Кальвину за установление последовательности реакций в этом цикле и была присуждена Нобелевская премия.

Этот цикл начинается с присоединения СО2 к акцептору – пятиуглеродному сахару рибулозо-1,5-дифосфату (РДФ).

Присоединение СО2 к тому или ионному веществу называется карбоксилированием, а фермент катализирующий такую реакцию – карбоксилазой.

В данной реакции карбоксилирование происходит с участием фермента рибулозодифосфаткарбоксилазы (РДФ-карбоксилаза).

Это самый распространенный в мире фермент.

Продукт реакции, содержащий 6 атомов углерода, в присутствии воды сразу распадается на две молекулы 3-фосфоглицириновой кислоты (3-ФГК):

 

С данной реакции и начинается цикл Кальвина.

ФГК и является, по современным взглядам, первичным продуктом ассимиляции углерода.

Для дальнейших превращений ФГК необходимы вещества световой фазы фотосинтеза: АТФ и НАДФН. Сначала 3-ФГК фосфорилируется при участии АТФ и образуется 1,3-дифосфоглицириновая кислота. Реакция катализируется ферментом фосфоглицераткиназой:

 

Затем происходит восстановление за счет НАДФН и образуется фосфоглицириновый альдегид ФГА:

 

Суммарный результат второй стадии: восстановление карбоксильной группы кислоты (–СООН) до альдегидной (–СНО).

Процесс превращения катализируется дегидрогеназой фосфоглициринового альдегида.

Дальнейшее превращение фосфоглициринового альдегида может происходить 4 путями.

ФГА частично с помощью триозофосфатизомеразы превращается в фосфодиоксиацетон (ФДА):

 

Это первый путь превращения ФГА.

Таким образом, в клетку поступают две найпростейшие формы сахаров: альдоза (ФГА) и кетоза (ФДА).

Это трехуглеродные сахара (триозосахара) с присоединенной к ним фосфатной группой содержат больше химической энергии, чем ФГК. Это первые углеводы, которые образуются при фотосинтезе.

С помощью альдолазы фосфодиоксиацетон (ФДА) соединяется с другой молекулой ФГА и образуется молекула фруктозо-1,6-дифосфата (ФДФ).

 

Это второй путь превращения ФГА.

Фруктозо-1,6-дифосфат дефосфорилируется и превращается во фруктозо-6-фосфат (Ф-6-Ф), что сопровождается накоплением в среде неорганического фосфата.

Фруктозо-6-фосфат в дальнейшем может выйти из цикла и использоваться для синтеза запасных форм углеводов: сахарозы, крахмала, других полисахаридов.

Однако ФГА (третий путь) может реагировать с эквимолярным количеством Ф-6-Ф, в результате образуются равные количества ксилулозо-5-фосфата и эритрозо-4-фосфата (транскетолаза).

Затем эритрозо-4-фосфат реагирует с равным количеством ФДА и образуется седагептулозо-1,7-дифосфат (альдолаза), которая фосфорилируется до седагептулозо-7-фосфата с участием седагептулозодифосфатазы.

 

Четвертый путь превращения ФГА связан с его реакцией с седагептулозо-7-фосфатом с образованием равных (эквимолярных) количеств  рибозо-5-фосфата и ксилулозо-5-фосфата. Ксилулозо-5-фосфат эпимиризуется, а рибозо-5-фосфат изомерезуется до рибулозо-5-фосфата, последняя фосфорилируется за счет АТФ и образуется рибулозо-1,5-дифосфат – первичное соединение цикла Кальвина (акцептор СО2).

В этих реакциях тратится еще три молекулы АТФ.

 

Из приведенных реакций цикла Кальвина видно, что фотосинтез, являясь процессом запасания энергии, тем не менее, для своего существования требует затраты энергии.

В цикле Кальвина образование фруктозо-6-фосфата можно представить в виде следующего суммарного выражения:

6СО2 + 12НАДФН + 12Н+ + 18АТФ + 11Н2О →

фруктозо-6-фосфат + 12НАДФ+ + 18АДФ + 17Фн

18 молекул АТФ запасают около 140 ккал и 12 НАДФН – ~ 615 ккал.

Следовательно, поглощено около 755 ккал энергии. При этом в гексозах запасается около 670 ккал/моль. При таком балансе КПД составляет около 90 %. ~ 10 % энергии растрачивается на поддержание цикла.

АТФ и НАДФН, которые образуются в световой стадии и используются на восстановление СО2, получили название ассимиляционной силы.

Цикл Кальвина подразделяют на три фазы:

  1. – карбоксилирующую РДФ + СО2 → 2ФГК;
  2. – восстановительную ФГК → ФГА;
  3. – регинирующую ФГА → РДФ.

Каждая шестая молекула ФГА выходит из цикла и используется на синтез сахарозы или полисахаров, тогда как остальные 5 молекул через приведенные выше промежуточные реакции преобразуются в три молекулы рибулозо-1,5-дифосфата.

Так как первичный продукт цикла Кальвина – ФГК –  содержит три атома углерода, то этот цикл получил название С3-цикла ассимиляции СО2. Упрощенную схему цикла можно представить в виде.

 

Последовательность реакций на пути преобразования СО2 в сахар удалось выявить благодаря использованию радиоактивного углерода 14С и хромотографии на бумаге.

Описанный цикл восстановления СО2 до сахаров локализован в хлоропластах, так же как и биосинтез крахмала из образованных в них гексозофосфатов.

«Главный» же по количеству сахар, запасенный в растительной клетке – сахароза, – синтезируется уже вне хлоропласта: в слое цитоплазмы, прилегающем к наружной мембране этой органеллы. Сахароза синтезируется из Ф-6-Ф, образованной из ФГА и ФДА, которые в отличие от других сахаров цикла (пентоз и гексоз) легко транспортируются через мембраны хлоропластов.

Скорость цикла Кальвина зависит не только от количества образованных в световой стадии АТФ и НАДФН, но и от их соотношений.

Только соотношение 3АТФ и 2НАДФН обеспечивает активное восстановление углерода и запасание энергии.

Когда степень сопряжения работы ЭТЦ фотосинтеза с фотофосфорилированием мала, тогда интенсивность фотосинтеза, в первую очередь, может снизиться за счет уменьшения количества рибулозо-1,5-дифосфата, так как в этом случае будет лимитироваться фосфорилирование рибулоза-5-фосфата.

Кроме этого, в цикле при недостатке АТФ и НАДФН уменьшается возможность восстановления ФГК до триоз и поэтому одновременно со снижением интенсивности фотосинтеза среди ассимилятов (продуктов фотосинтеза) клетки увеличивается часть неуглеродных соединений.

Такое явление характерно, например, для растений, выращенных при слабом освещении.

cyber
Оцените автора
CyberLesson | Быстро освоить программирование Pascal и C++. Решение задач Pascal и C++
Добавить комментарий