Микрочастицы: свойства и классификация
МИКРОЧАСТИЦЫ — частицы очень малой массы; к ним относятся элементарные частицы, атомные ядра, атомы, молекулы.
Экспериментальная и теоретическая физика установила, что микрочастица это частица вещества и полевой материи. Полевая материя является переносчиком взаимодействия. Теоретическая физика стремится к созданию единой теории поля, к объединению всех полей взаимодействия: гравитационного, слабого, сильного и т.д.
Физика микрочастиц открывая новые микрочастицы одновременно открывает закономерности математического аппарата, который описывает поля и предсказывает в них то или иное физическое явление (каналы распада микрочастиц или их образование).
В настоящее время нет описания пространства, обладающего той связностью, которая рас кодировала бы тот огромный материал, который накоплен в экспериментах.
Фундаментальное понятие связности, которое дало особенно сильные результаты в теории Коши, вообще не отражено при классификации микрочастиц.
Таким аппаратом являются методы теории функций пространственного комплексного переменного (ТФКПП). Структура много связного пространства, описываемая этим аппаратом, соответствует структуре физического пространства микрочастиц.
Кварковая модель адронов
Главная идея, высказанная впервые М. Гелл-Манном и Дж. Цвейгом, состоит в том, что все частицы, участвующие в сильных взаимодействиях, построены из более фундаментальных частиц – кварков.
Целый пласт новых явлений и понятий был вскрыт благодаря гипотезе, гласящей что все адроны построены из фундаментальных частиц, названных кварками.
Кварковая модель была предложена в то время, когда были известны лишь так называемые легкие адроны, то есть состоящие только из легких кварков, u, d и s.
Эта модель сразу привела в порядок всю систематику этих адронов. На ее основе не только была понята структура уже известных к тому времени частиц, но и предсказан ряд неизвестных в то время частиц, а открытие очарованных частиц, а затем и еще более тяжелых адронов, содержащих b-кварки, и исследование их свойств явилось блестящим подтверждением кварковой теории адронов.
Впервые, благодаря большой массе с- и b-кварков, предстала во всем своем богатстве и наглядности картина уровней системы кварк-антикварк. Эффект от этого открытия был очень велик.
В кварки поверили даже те, кто раньше относился к ним более чем скептически. Создание и развитие квантовой хромодинамики так же пролило свет на несогласованности имевшие место в кварковой модели.
В настоящее время нет ни одного факта, который бы противоречил квантовой хромодинамике. Однако целый ряд явлений находит в ней лишь качественное объяснение, а не количественное описание.
Классификация кварков: ароматы и цвета
Для согласования кварковой модели адронов с принципом Паули был предложен новый, усложненный вариант модели. Эта модель была предложена в 1965г Н. Н. Боголюбовым, Б. В. Струминским, А. Н. Тавхелидзе в СССР и независимо Й. Намбу, М. И. Ханом в США.
В ней каждый из кварков может появляться в трех различных состояниях, идентичных по всем свойствам, кроме нового особого свойства, названного “цветом” (например, кварки могут быть красными, синими или желтыми). Цвет не имеет прямого отношения к тому, что принято называть цветом в повседневной жизни.
Кварки никак нельзя мыслить в виде окрашенных шариков. Определенный тип кварков (u, d или s) часто именуют “ароматом”. Кварки, как говорят, различают по цвету и аромату.
Согласно этой терминологии каждый аромат кварка может проявляться в трех различных цветовых состояниях, характеризуемых одинаковыми массами, электрическими зарядами и всеми другими свойствами. Антикварки имеют цвета антижелтый, антисиний, антикрасный. Число различных кварков, включая антикварки, равно: 6 x 2 x 3 = 36.
На первый взгляд может показаться, что утроение числа кварков должно привести к значительному увеличению числа адронов, составленных из кварков. Однако в действительности это не так. Чтобы результаты новой кварковой модели согласовались с действительностью, вводится принцип “бесцветности”.
Согласно этому принципу все адроны должны быть бесцветными или белыми. Это означает, что каждый барион должен состоять из трех кварков различных цветов. Так как кваркам приписывают основные цвета спектра, то каждая комбинация может быть названа белой, поскольку при смешении основных цветов получается белый цвет.
Элементарные частицы и проблема поиска «первичных объектов»
Элементарными называют частицы, входящие в состав прежде «неделимого» атома.
Первыми были обнаружены электрон, протон, нейтрон и фотон — квант электромагнитного поля. Из первых трех строили вещество, а фотон осуществлял взаимодействие между ними. Считали, что они ни на что далее не могут быть разложены и потому являются «первичными кирпичиками» мироздания.
Потом оказалось, что эти элементарные частицы имеют внутреннюю структуру и могут друг в друга превращаться. После второй мировой войны благодаря мощной технике было открыто еще много частиц, претендующих на «элементарность».
У каждой частицы, кроме фотона, оказалась еще и античастица. Сейчас элементарных частиц уже более трехсот. К ним относят и те частицы, которые получают на мощных циклотронах, синхротронах и других ускорителях. Есть элементарные частицы, возникающие при прохождении через атмосферу космических лучей, они существуют несколько миллионных долей секунды, потом распадаются, видоизменяются, превращаясь в другие элементарные частицы, или испускают энергию в форме излучения.
Современная наука выявила единство на самом глубоком уровне: наблюдаемое вещество состоит из фотонов, лептонов (электроны, мюоны, нейтрино) и кварков.
Помимо переносимых фотонами электромагнитных взаимодействий существуют сильные ядерные взаимодействия, связывающие кварки в барионы (протоны, нейтроны и пр.) и мезоны.
Слабые ядерные взаимодействия ответственны за распад нейтронов, например. Все они описываются единой нелинейной теорией, обобщающей уравнения Максвелла. Такое обобщение было сделано в 1954 г. Ч.Янгом и Р. Миллсом, и другие обобщения называются также теорией Янга — Миллса.
Ранее подобные теории выдвигали Г. Ми и М. Борн, А. Эйнштейн и Я. И.Френкель. Хотя проблема элементарных частиц связана с самими основами науки, их изучение ведется в некотором отрыве от других областей физики.
Основными характеристиками элементарных частиц являются масса, электрический заряд, спин, среднее время жизни, магнитный момент, пространственная четность, барионный заряд и квантовые числа.
Масса элементарных частиц — это масса покоя, поскольку она не зависит от состояния движения.
Ее определяют по отношению к массе покоя электрона mе, самой маленькой из масс покоя. Нейтрон и протон тяжелее электрона почти в 2000 раз. Но есть и очень тяжелые частицы, например Z-частицы, получаемые на ускорителях, с массой покоя 2 000 000 те. Фотоны вообще не имеют массы покоя. По массе частицы делят на лептоны (электрон и нейтрино); мезоны (с массой от 1 до 1000 те); барионы (с массой более 1000 те).
В состав барионов входят протоны, нейтроны, гипероны и др.
Электрический заряд меняется от нуля до «+» или «-». Каждой частице, кроме фотона, нейтрино и двух мезонов, соответствует частица с противоположным зарядом, или античастица.
В 1963 г. была высказана гипотеза о существовании частиц с дробным зарядом — кварков.
Спин — одна из важнейших характеристик элементарных частиц. Она определяется собственным моментом импульса частицы. Спин фотона равен 1; это означает, что частица примет тот же вид после полного оборота на 360°.
Частица со спином — 1/2 примет прежний вид при обороте, в 2 раза большем, т. е. в 720°. Спин протона, нейтрона и электрона — 1/2. Существуют частицы со спином 3/2, 5/2 и т.д. Частица со спином, равным нулю, одинаково выглядит при любом угле поворота. В зависимости от значения спина все частицы делят на две группы:
фермионы (название дано в честь Энрико Ферми) — с полуцелыми (1/2, 3/3, …) спинами.
Фермионы составляют вещество и, в свою очередь, делятся на два класса — лептоны (от греч. leptos — легкий) и кварки. Кварки входят в состав протонов, нейтронов и других подобных им частиц, называемых в совокупности адрона-ми (от греч. adros — сильный).
Заряженные лептоны могут так же, как и электроны, вращаться вокруг ядер, образуя атомы. Лептоны, не имеющие заряда, могут, как и нейтрино, проходить сквозь всю Землю, ни с чем не взаимодействуя. У каждой частицы есть и античастица, отличающаяся только зарядом;
бозоны (названные в честь индийского ученого Шатьендраната Бозе, одного из создателей квантовой статистики) — это частицы с целыми спинами (0, 1, 2), бозоны переносят взаимодействие.
Между частицами существуют четыре типа взаимодействий, каждое из которых переносится своим типом бозонов: фотон, квант света — электромагнитные взаимодействия, гравитон — силы тяготения, действующие между любыми телами, имеющими массу.
Восемь глюонов переносят сильные ядерные взаимодействия, связывающие кварки. Промежуточные векторные бозоны переносят слабые взаимодействия, ответственные за некоторые распады частиц. Считается, что к этим четырем взаимодействиям сводятся все силы в природе.
Одним из самых ярких достижений нашего века стало доказательство того, что при очень высоких температурах (или энергиях) все четыре взаимодействия сливаются в одно.
При энергии 100 ГэВ (109 эВ) объединяются электромагнитное и слабое взаимодействия. Такая энергия соответствует температуре Вселенной через 10-10 с после Большого Взрыва, и в 4 триллиона раз выше комнатной. Это открытие позволило предположить, что при энергии порядка 1015 ГэВ можно достичь объединения с ними сильных взаимодействий, как это утверждается в Теориях Великого Объединения (ТВО), а при энергии 1019 ГэВ к взаимодействиям ТВО присоединится и гравитационное взаимодействие, «образуя» ТВС (Теорию Всего Сущего).
Ускорителей, на которых можно получить такие энергии и проверить эти теории, пока нет и не предвидится, поэтому обращаются к Вселенной, чтобы найти в ней возможные ограничения для огромного числа элементарных частиц.
В последние тридцать лет между физикой элементарных частиц и космологией существует тесная связь. Совокупность астрофизических данных можно рассматривать как «экспериментальный материал», накопленный в результате работы Вселенной — гигантского ускорителя частиц.
Мы можем иметь дело только с косвенными следствиями происходивших и происходящих процессов, с усредненным по всей Вселенной результатом их влияния на эволюцию материи.
Среди лептонов наиболее известен электрон, вероятно, он не состоит из других частиц, т. е. элементарен. Другой лептон — нейтрино. Это самый распространенный лептон во Вселенной и в то же время самый неуловимый. Нейтрино не участвует ни в сильном, ни в электромагнитном взаимодействиях.
После предсказания нейтрино было обнаружено только через 30 лет на ускорителях. Нейтрино бывает трех видов — электронное, мюонное и тау-нейтрино. Мюон — тоже широко распространенный в природе лептон. Он был обнаружен в космических лучах в 1936 г.; это нестабильная частица, а в остальном он похож на электрон.
За две миллионные доли секунды он распадается на электрон и два нейтрино. Фоновое космическое излучение в большей части состоит из мюонов. В конце 70-х гг. был обнаружен третий заряженный лептон (кроме электрона и мюона) — тау-лептон. Он ведет себя очень похоже на своих собратьев, но тяжелее электрона в 3500 раз. У каждого лептона есть и античастица, т.е. всего их 12.
Адронов существует очень много, их сотни. Поэтому часто их считают не элементарными частицами, а составленными из других.
Они бывают электрически заряженными и нейтральными. Все адроны участвуют в сильном, слабом и гравитационном взаимодействиях. Среди них самые известные — протон и нейтрон. Остальные живут очень мало, распадаясь за 10-6 с за счет слабого взаимодействия или за 10-23 с — за счет сильного. Адроны рассортировали по массе, заряду и спину. В этом помогла гипотеза кварков, или частиц, составляющих адроны.
Кварки могут соединяться для этого тройками, составляя барионы, либо парами: кварк—антикварк, составляя мезоны (промежуточные частицы).
Кварки имеют заряд 1/3 или 2/3 заряда электрона. Тогда в комбинации они дадут 0 или 1. Все кварки имеют спин, равный 1/2, т.е. они относятся к фермионам. Считают, что они сцепляются сильным взаимодействием, но участвуют и в слабом.
Особенности сильного взаимодействия характеризуют типами («ароматами») — «верхний», «нижний», «странный». Но слабое взаимодействие может поменять «аромат» кварка. Например, при распаде нейтрона один из «нижних» кварков становится «верхним», а избыток заряда уносит рождающийся электрон. Так что сильное взаимодействие не может менять «аромат», а без изменения «аромата» кварка невозможен распад адрона.
Новый адрон, названный -частицей, был обнаружен на ускорителях (1974).
Поэтому в соответствии с теорией кварков ввели еще одну характеристику, четвертый «аромат», так появился «очарованный» кварк. Так что -частица — это предположительно мезон, состоящий из с-кварка и с-антикварка. Сейчас обнаружено уже много «очарованных» частиц, и все
они тяжелые. А в 1977 г. появился -мезон, и вся история повторилась, пятый аромат получил название «прелестный».
Так развивается ныне атомистика. Сейчас считают, что существуют 12 кварков — фундаментальных частиц и столько же античастиц. Шесть частиц — это кварки с экзотическими именами «верхний», «нижний», «очарованный», «странный», «истинный», «прелестный». Они являются порождением теории, стремящейся к упорядоченности и красоте, и открыты все, за исключением «истинного».
Остальные шесть — лептоны: электрон, мюон, -частица и соответствующие им нейтрино (электронное, мюонное, нейтрино).
Эти 12 частиц, или две по шесть, группируют в три поколения, каждое из которых состоит из четырех членов.
В первом поколении — «верхний» и «нижний» кварки, электрон и электронное нейтрино, во втором — «очарованный» и «странный» кварки, мюон и мюонное нейтрино, в третьем — «истинный» и «прелестный» кварки и -частица со своим нейтрино. Все обычное вещество состоит из частиц первого поколения. Протон, например, состоит из двух «верхних» кварков и одного «нижнего», нейтрон — из двух «нижних» и одного «верхнего».
Каждый атом состоит из тяжелого ядра (сильно связанных протонов и нейтронов), окруженного электронным облаком.
Но почему существуют другие поколения частиц и сколько их еще может быть? По мнению японских физиков М. Кобаяси и Т. Маскава, асимметрия между веществом и антивеществом требует наличия трех поколений. Если же число поколений не ограничено, являются ли кварки и лептоны основными «кирпичиками природы» и насколько они фундаментальны?
Последние данные, полученные на разных ускорителях, позволяют считать, что число поколений не может быть более пяти, так как полное число нейтрино не превышает этого числа.
Ответы на эти вопросы ищут в современной космологии, в моделях первичного нуклеосинтеза, породившего те или иные частицы, часть которых может быть установлена по распространенности того или другого элемента во Вселенной. Эти исследования дают человеку возможность прикоснуться к тайне мироздания, найти те «кирпичики», из которых построено все в мире, а за ними стоят и новые технологии.
Суммарный цвет объединившихся кварков или антикварков, независимо от того, объединены три кварка (барионы), три антикварка (антибарионы) или кварк и антикварк (мезоны), должен быть белым или бесцветным.
Белый цвет дает сумма красного, зеленого, синего или красного — антикрасного, синего — антисинего и т.п.
Таким образом, можно говорить о цветовой симметрии в микромире.
Кварки объединяются между собой благодаря сильному взаимодействию. Переносчиками сильного взаимодействия выступают глюоны, которые как бы «склеивают» кварки между собой. Глюоны также имеют цвета, но в отличие от кварков их цвета смешанные, например красный— антисиний и т.п., т.е. глюон. состоит из цвета и антицвета. Испускание или поглощение глюона меняет цвет кварка, но сохраняет аромат.
Известно восемь типов глюонов.
Предполагается, что кварки участвуют также в электромагнитных и слабых взаимодействиях. В электромагнитном взаимодействии кварки не меняют свой цвет и аромат. В слабых взаимодействиях — меняют аромат, но сохраняют цвет.
Теория кварков позволяет предложить стройную и гармоничную модель строения атома. Согласно этой модели атом состоит из тяжелого ядра (протоны и нейтроны, связанные глюонными полями) и электронной оболочки. Сейчас теория кварков продолжает развиваться и уточняться, поэтому ее нельзя считать окончательно сформированной.