Открытие ДНК
Открыли ДНК 28 февраля 1953 года.
Используя рентгеновскую дифракцию, а также другие данные Розалинды Франклин и ее информацию о том, что основания были парными, Джеймс Уотсон и Фрэнсис Крик пришли к первой точной модели молекулярной структуры ДНК в 1953 году, которая была принята Розалиндой Франклин после проверки.
25 апреля 1953 года в американском журнале Nature была опубликована статья Джеймса Уотсона и Френсиса Крика «Структура дезоксирибонуклеиновой кислоты». Публикация занимала чуть больше одной странички, в ней был всего один очень простой рисунок. Так, 50 лет назад, впервые была предложена модель пространственной структуры ДНК.
Бесспорно, разгадка строения молекулы ДНК вызвала революцию в естествознании и повлекла за собой целый ряд новых открытий, без которых нельзя представить не только современную науку, но и современную жизнь в целом. За открытием Уотсона и Крика последовал взрыв генетических исследований. Знание структуры ДНК помогло понять процесс репликации (удвоения) ДНК и, таким образом, установить, как генетическая информация передается от поколения к поколению.
Впоследствии был открыт генетический код, несущий информацию о первичной структуре белков — основных компонентов всех клеток. Разгадка устройства наследственного аппарата клетки послужила точкой отсчета в развитии новой науки — молекулярной биологии. Появление таких ее методов, как полимеразная цепная реакция, молекулярное клонирование, секвенирование было бы немыслимо без знания структуры ДНК.
Вне всякого сомнения, данное открытие послужило значительным импульсом для развития генетики, апогеем которого явилась научная программа «Геном человека». Уотсон стал первым руководителем этого проекта, в рамках которого была полностью расшифрована наследственная информация Homo sapiens. Знание генома человека в перспективе позволит раскрыть причину многих заболеваний, создать лекарства для, так называемой, генотерапии, направленные на исправление «больных генов» или замену «испорченных» генов на «здоровые».
За прошедшие 50 лет стало ясно, что работа Уотсона и Крика по изучению структуры ДНК изменила всю биологию и оказалась важнейшей для медицины. С трудом можно назвать ту область естественных наук, на развитие которой не повлияло их открытие. В 1962 году Джеймс Уотсон, Френсис Крик, вместе с Морисом Уилкинсом, специалистом по рентгеноструктурному анализу, получили Нобелевскую премию. Это, пожалуй, самое выдающееся событие в истории естествознания XX века.
Кстати, еще одним значимым событием этого года является юбилей одного из «отцов» двойной спирали, Джеймса Уотсона, ему исполняется 75 лет. Трудно поверить, что на момент выхода в свет той самой статьи в журнале Nature, перевернувшей весь мир, ему было всего 25 лет. Сейчас профессор Уотсон руководит лабораторией Cold Spring Harbor в Нью-Йорке.
Более пятидесяти лет назад было сделано замечательное научное открытие. 25 апреля 1953 года была опубликована статья о том, как устроена самая загадочная молекула – молекула дезоксирибонуклеиновой кислоты.
Сокращенно её называют ДНК. Эта молекула встречается во всех живых клетках всех живых организмов. Обнаружили ее ученые более ста лет назад. Но тогда никто не знал, как эта молекула устроена и какую роль играет в жизни живых существ.
Окончательно разгадать тайну удалось английскому физику Френсису Крику и американскому биологу Джеймсу Уотсону.
Их открытие было очень важным.
И не только для биологов, которые узнали наконец, как устроена молекула, управляющая всеми свойствами живого организма.
Одно из крупнейших открытий человечества было сделано так, что совершенно невозможно сказать, какой науке это открытие принадлежит, – так тесно слились в нем химия, физика и биология.
Этот сплав наук и есть самая яркая черта открытия Крика и Уотсона.
История открытия ДНК
Ученых давно интересовала тайна главного свойства всех живых организмов – размножение.
Почему дети – идет ли речь о людях, медведях, вирусах – похожи на своих родителей, бабушек и дедушек? Для того, чтобы открыть тайну, биологи исследовали самые разные организмы.
И ученые выяснили, что за сходство детей и родителей отвечают особые частицы живой клетки – хромосомы. Они похожи на маленькие палочки. Небольшие участки палочки-хромосомы назвали генами. Генов очень много, и каждый отвечает за какой-нибудь признак будущего организма.
Если говорить о человеке, то один ген определяет цвет глаз, другой – форму носа… Но из чего состоит ген и как он устроен, этого ученые не знали. Правда, было уже известно: в хромосомах содержится ДНК и ДНК имеет какое-то отношение к генам.
Разгадать тайну гена хотели разные ученые: каждый смотрел на эту тайну с точки зрения своей науки. Но чтобы узнать, как устроен ген, маленькая частица ДНК, надо было узнать, как устроена и из чего состоит сама молекула.
Химики, которые исследуют химический состав веществ, изучали химический состав молекулы ДНК.
Физики стали просвечивать ДНК рентгеновскими лучами, как обычно они просвечивают кристаллы, чтобы узнать, как эти кристаллы устроены. И выяснили, что ДНК похожа на спираль.
Биологи интересовались загадкой гена, конечно, больше всех.
И Уотсон решил заняться проблемой гена. Для того, чтобы поучиться у передовых биохимиков и побольше узнать о природе гена, он отправился из Америки в Европу.
В то время Уотсон и Крик еще не знали друг друга. Уотсон, проработав некоторое время в Европе, никак существенно не продвинулся в выяснении природы гена.
Но на одной из научных конференций он узнал, что физики изучают строение молекулы ДНК с помощью своих, физических методов.
Узнав это, Уотсон понял, что тайну гена ему помогут раскрыть физики, и отправился в Англию, где устроился работать в физическую лабораторию, в которой исследовали биологические молекулы.
Здесь-то и произошла встреча Уотсона и Крика.
Как физик крик заинтересовался биологией
Крик вовсе не интересовался биологией. До тех пор, пока ему на глаза не попалась книжка известного физика Шредингера «Что такое жизнь с точки зрения физики?».
В этой книжке автор высказал предположение, что хромосома похожа на кристалл.
Шредингер заметил, что «размножение» генов напоминает рост кристалла, и предложил ученым считать ген кристаллом. Это предложение заинтересовало Крика и других физиков. Вот почему.
Кристалл – очень простое по структуре физическое тело: в нем все время повторяется одна и та же группа атомов. А устройство гена считали очень сложным, раз их так много и все они разные. Если гены состоят из вещества ДНК, а молекула ДНК устроена так же, как кристалл, то получается: она одновременно и сложная и простая.
Как же так?
Уотсон и Крик понимали: физики и биологи слишком мало знают о молекуле ДНК. Правда, кое-что было известно о ДНК химикам.
Как уотсон помог химикам, а химики – крику
Химики знали, что в состав молекулы ДНК входят четыре химических соединения: аденин, тимин, гуанин и цитозин.
Их обозначили по первым буквам – А, Т, Г, Ц. Причем аденина было столько же, сколько тимина, а гуанина – сколько цитозина. Почему? Этого химики понять не могли.
Они догадывались: это как-то связано со структурой молекулы.
Но как, не знали. Химикам помог биолог Уотсон.
Уотсон привык к тому, что в живой природе многое встречается парами: пара глаз, пара рук, пара ног, существуют, например, два пола: мужской и женский… Ему казалось, что и молекула ДНК может состоять из двух цепочек. Но если ДНК похожа на спираль, как выяснили физики при помощи рентгена, то как в этой спирали две цепочки держатся друг за друга?
Уотсон предположил, что при помощи А, Г, Ц и Т, которые, как руки, протянуты друг к другу. Вырезав из картона контуры этих химических соединений, Уотсон долго прикладывал их то так, то эдак, пока вдруг не увидел: аденин прекрасно соединяется с тимином, а гуанин с цитозином.
Уотсон рассказал об этом Крику.
Тот быстро сообразил, как должна выглядеть двойная спираль на самом деле – в пространстве, а не на рисунке.
Оба ученых начали строить модель ДНК.
Как это – «строить»? А вот как. Из молекулярного конструктора, который напоминает детский конструктор-игрушку. В молекулярном конструкторе деталями служат шарики-атомы, которые пристегиваются друг к другу кнопочками в том порядке, в каком расположены атомы в веществе.
Молекулярный конструктор придумал другой ученый – химик Полинг. Он строил модели молекул белков и выяснил, что в них обязательно должны быть участки, похожие на спирали.
Очень скоро это подтвердили физики той лаборатории, где работал Крик. Важная биологическая проблема была решена теоретическим путем.
Способ Полинга так понравился Крику, что он предложил Уотсону построить модель ДНК при помощи молекулярного конструктора. Вот так была создана модель знаменитой Двойной спирали ДНК, которую вы можете увидеть на рисунке.
И что замечательно: из-за того, что А в одной цепи может «склеиваться» только с Т в другой, а Г – только с Ц, автоматически выполняется «химическое» правило, по которому количество А равно количеству Т, а количество Г равно количеству Ц.
Но самое о главное, что, глядя на Двойную спираль ДНК, сразу понятно, как решить загадку размножения генов. Достаточно «размотать» косичку ДНК, и каждая цепочка сможет достроить на себе новую так, чтобы А склеивалось с Т, а Г – с Ц: был один ген – стало два. Из-за того, что размеры пар А-Т и Г-Ц одинаковы, молекула ДНК по структуре в самом деле напоминает кристалл, как предполагали физики.
И в то же время этот «кристалл» может содержать самые разные сочетания А, Т, Ц, Г, и поэтому все гены разные.
Решение проблемы гена Уотсоном и Криком привело к тому, что буквально за 2–3 года сформировалась целая новая область естествознания, которую назвали молекулярной биологией.
Часто ее называют физико-химической биологией.
Важность открытия ДНК
Вопрос о том, что и как записано в ДНК, ускорил расшифровку генетического кода.
Осознание того, что гены — это ДНК, универсальный носитель генетической информации, привело к появлению генной инженерии. Сегодня уже студенты университетов расшифровывают чередование нуклеотидов в ДНК, соединяют гены разных организмов, переносят их между видами, родами и значительно более удаленными таксонами. На базе генной инженерии возникла биотехнология, которую известный фантаст С. Лем определил как использование закономерностей биогенеза в производстве.
Вспомним, что говорил о природе генов В.Л. Иоганнсен, человек, который в 1909 году дал само имя гена: «Свойства организмов обусловливаются особыми, при известных обстоятельствах отделимыми друг от друга и в силу этого до известной степени самостоятельными единицами или элементами в половых клетках, которые мы называем генами.
С тех пор ситуация существенно изменилась.
Мы убедились, что, кроме атомов и молекул, в клетке ничего нет. И подчиняется она тем же физическим закономерностям, что и неживые объекты, в чем смогли убедиться физики, устремившиеся в биологию в 40-х годах именно в поисках каких-то принципиально новых, неизвестных физике законов природы.
Все реакции клеточного метаболизма осуществляются под контролем биокатализаторов — ферментов, структура которых записана в ДНК генов.
Передается эта запись в цепи переноса информации ДНК РНК БЕЛОК.
Сначала информация, записанная в виде чередования дезоксирибонуклеотидов на одной из двух комплементарных цепей в ДНК гена, переписывается на одноцепочечную молекулу информационной рибонуклеиновой кислоты – иРНК (она же мРНК от англ. messenger — переносчик). Это процесс транскрипции.
На следующем этапе по матрице иРНК строится последовательность аминокислотных остатков полипептида. Тем самым создается первичная структура будущей молекулы белка. Это процесс трансляции. Первичная структура определяет способ складывания молекулы белка и тем самым определяет ее ферментативную или какую-либо иную, например структурную или регуляторную, функцию.
Эти представления зародились в начале 40-х годов, когда Дж.
Бидл и Э. Тейтум выдвинули свой знаменитый лозунг «Один ген — один фермент»*. Он, подобно политическим лозунгам, разделил научное сообщество на сторонников и противников высказанной гипотезы о равенстве числа генов и числа ферментов в клетке.
Аргументами в возникшей дискуссии служили факты, полученные при разработке так называемых систем ген-фермент, в которых изучали мутации генов, определяли их расположение внутри генов и учитывали изменения ферментов, кодируемых этими генами: замены аминокислотных остатков в их полипептидных цепях, их влияние на ферментативную активность и т.д. Теперь мы знаем, что один фермент может быть закодирован в нескольких генах, если он состоит из разных субъединиц, то есть из разных полипептидных цепей.
Знаем, что есть гены, которые вообще не кодируют полипептидов. Это гены, кодирующие транспортные РНК (тРНК) или рибосомные РНК (рРНК), участвующие в синтезе белка.
В своей первоначальной форме принцип «Один ген — один фермент» представляет скорее исторический интерес, однако заслуживает памятника, поскольку он стимулировал создание целой научной области — сравнительной молекулярной биологии гена, в которой гены — единицы наследственной информации фигурируют как самостоятельные предметы исследования.
Кроме того, разработка многочисленных систем ген-фермент помогла сформулировать вопрос: что и как записано в генетическом коде?
На этот вопрос в общей форме ответил Ф. Крик со своими коллегами в 1961 году. Оказалось, что код триплетен — каждая кодирующая единица-кодон состоит из трех нуклеотидов. В каждом гене триплеты считываются с фиксированной точки, в одном направлении и без запятых, то есть кодоны ничем не отделены друг от друга.
Последовательность кодонов определяет последовательность аминокислотных остатков в полипептидах.
Таким образом, вследствие специфической организации генетического кода кодонам-нонсенсам отводится особая роль — терминаторов трансляции. Поэтому, возникая мутационным путем, они, как и мутации типа сдвиг рамки считывания, проявляются значительно чаще и четче, чем мутации-миссенсы, изменяющие смысл кодонов.*
* Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего.- М.,2001. – С. 97.
Нонсенсы и сдвиги считывания часто встречаются в так называемых псевдогенах, которые были открыты в начале 80-х годов в результате изучения нуклеотидных последовательностей в геномах высших эукариот.
Псевдогены очень похожи на обычные гены, но их проявление надежно «заперто» четко проявляющимися мутациями: сдвигами считывания и нонсенсами. Псевдогены представляют собой резерв эволюционного процесса. Их фрагменты используются при возникновении новых генов.
Репарация, рекомбинация, репликация, типы, синтез ДНК
Дезоксирибонуклеиновая кислота (ДНК) — один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов.
Основная роль ДНК в клетках — долговременное хранение информации о структуре РНК и белков.
Расшифровка структуры ДНК (1953 г.) стала одним из поворотных моментов в истории биологии.
В научной литературе, посвященной изучению ДНК чаще всего можно встретить имена Дж. Уотсона и Френсиса Крика, как ученых, создавших в 1953 году модель структуры молекулы ДНК.
Однако, сама молекула была открыта намного раньше и не этими учеными. Имя – же первооткрывателя упоминается далеко не в каждом учебнике, справочнике или энциклопедии.
Первенство открытия дезоксирибонуклеиновой кислоты приписывается молодому швейцарскому врачу Иоганну Фридриху Мишеру. В 1869-м году, работая в Германии, он занимался изучением химического состава клеток животных. В качестве объекта своих исследований он выбрал клетки лейкоцитов. Лейкоциты ученый выделял из гнойного материала, т.к. именно в гное очень много этих белых кровяных телец, выполняющих защитную функцию в организме, и уничтожающих микробы.
Из местной хирургической больницы ему поставляли повязки, снятые со свежих гнойных ран. Мишер отмывал лейкоциты из ткани бинтов, а затем выделял из отмытых клеток молекулы белков. В процессе исследований, ему удалось установить, что кроме белка, в лейкоцитах содержится еще какое-то неизученное вещество.
Оно выделялось в виде осадка нитевидной или хлопьеобразной структуры при создании кислой среды. При подщелачивании раствора, осадок растворялся. Исследуя препарат лейкоцитов под микроскопом, Мишер обнаружил, что в процессе отмывания лейкоцитов разбавленной соляной кислотой, от них остаются одни ядра. На основании этого, он сделал заключение о том, что в ядрах клеток содержится неизвестное вещество, и назвал его нуклеином, от латинского слова nucleus, что в переводе означает «ядро».
При более подробном изучении, Мишер разработал целую систему выделения и очистки нуклеинов.
Выделенное соединение он подверг обработке эфиром и другими органическими растворителями, и убедился, что это не жировое соединение, т. к. оно не растворялось в этих веществах. Не имели нуклеины и белковой природы, т.к. при обработке ферментами, разлагающими белки, они не претерпели никаких изменений.
Химический анализ, в те времена, был несовершенен, неточен и трудоемок.
Медленно, но верно, ученый провел его и определил, что нуклеин состоит из углерода, водорода, кислорода и фосфора. Фосфорные органические соединения тогда еще были практически не известны, поэтому Мишер сделал заключение, что открыл неизвестный науке класс соединений, содержащихся внутри клетки.
Статью о своем новом открытии он хотел разместить в журнале «Медико-химические исследования», который выпускался его учителем, одним из основателей биохимии Феликсом Хоппе-Зейлером.
Но он, прежде чем печатать материал, решил проверить его данные в своей лаборатории. На это исследование ушел целый год, и только в 1871-м году, в одном из номеров журнала, работа Мишера была опубликована. Она сопровождалась двумя статьями самого Хоппе-Зейлера и его сподвижника, с подтверждением данных о составе и свойствах нуклеинов.
После возвращения в Швейцарию, Мишер принял предложение занять место заведующего кафедрой физиологии в Базельском университете.
Там он продолжил свои исследования. На новом месте ученый использовал для опытов более приятный, и не менее богатый нуклеином материал – молоки лососевых рыб (они до сих пор используются для этих же целей). На берегу богатого лососем Рейна, протекающего через Базель, у него не было недостатка в исследуемом материале.
В 1874-м году Мишер опубликовал статью, в которой утверждал, что нуклеины, обнаруженные им в молоках лососевых рыб, явно связаны с процессом оплодотворения. При этом он никак не связал их с наследственностью.
Ученому показалось открытое им соединение таким простым и единообразным, что он никак не мог предположить, что именно в нем может храниться все разнообразие наследственных признаков живых организмов. Существующие в те времена методы биохимического анализа, еще не позволяли обнаружить существенных отличий нуклеинов человека от нуклеинов лосося и, тем более распознать столь сложную структуру, которая и до сих пор полностью не распознана.
Открытие двойной спирали ДНК
Нуклеиновые кислоты впервые были открыты вядре человеческих клеток швейцарским исследователем Фридрихом Мишером в 1869 году.
В начале XX века биологам и биохимикам удалось выяснить структуру и основные свойства клетки. Было установлено, что одна из нуклеиновых кислот, ДНК, представляет собой чрезвычайно большую молекулу, состоящую из структурных единиц, названных нуклеотидами, каждый из которых содержит азотистые основания.
Морис Уилкинс и Розалин Франклин, учёные из Кембриджского университета, провели рентгеноструктурный анализ молекул ДНК и показали, что они представляют собой двойную спираль, напоминающую винтовую лестницу.
Полученные ими данные привели американского биохимика Джеймса Уотсона к мысли исследовать химическую структуру нуклеиновых кислот. Национальное общество по изучению детского паралича выделило субсидию. В октябре 1951 году в Кавендишской лаборатории Кембриджского университета Уотсон занялся исследованием пространственной структуры ДНК совместно с Джоном К. Кендрю и Френсисом Криком, физиком, интересовавшимся биологией и писавшим в то время докторскую диссертацию.
Уотсону и Крику было известно, что существует два типа нуклеиновых кислот — дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК), каждая из которых состоит из моносахарида группы пентоз, фосфата и четырёх азотистых оснований: аденина, тимина (в РНК — урацила), гуанина и цитозина.
В течение последующих восьми месяцев Уотсон и Крик обобщили полученные результаты с уже имевшимися и в феврале 1953 г. сделали сообщение о структуре ДНК. Месяцем позже они создали трёхмерную модель молекулы ДНК, сделанную из шариков, кусочков картона и проволоки.
Согласно модели Крика — Уотсона, ДНК представляет собой двойную спираль, состоящую из двух цепей дезоксирибозофосфата, соединённых парами оснований аналогично ступенькам лестницы.
Посредством водородных связей аденин соединяется с тимином, а гуанин — с цитозином. С помощью этой модели можно было проследить репликацию самой молекулы ДНК. По Уотсону и Крику, две части молекулы ДНК отделяются друг от друга в местах водородных связей, что очень похоже на расстёгивание застёжки-молнии. Из каждой половины прежней молекулы синтезируется новая молекула ДНК.
Последовательность оснований функционирует как матрица, или образец, для образования новых молекул ДНК. Открытие химической структуры ДНК было оценено во всем мире как одно из наиболее выдающихся биологических открытий века.
ДНК выполняет чрезвычайно важную роль, необходимую как для поддержания, так и для воспроизведения жизни. Во-первых, это хранение наследственной информации, которая заключена в последовательности нуклеотидов одной из её цепей.
Наименьшей единицей генетической информации после нуклеотида являются три последовательно расположенных нуклеотида — триплет. Расположенные друг за другом триплеты, обусловливающие структуру одной цепи, представляют собой так называемый ген. Вторая функция ДНК — передача наследственной информации из поколения в поколение. ДНК участвует в качестве матрицы в процессе передачи генетической информации из ядра в цитоплазму к месту синтеза белка.
Уотсон, Крик и Уилкинс получили Нобелевскую премию по физиологии и медицине 1962 года «за открытия в области молекулярной структуры нуклеиновых кислот и за определение их роли для передачи информации в живой материи».
В речи на презентации А. В. Энгстрем из Каролинского института охарактеризовал ДНК как «полимер, составленный из строительных блоков нескольких типов — моносахарида, фосфата и азотистых оснований…
Моносахарид и фосфат — повторяющиеся элементы гигантской молекулы ДНК, кроме того, она содержит четыре типа азотистых оснований. Открытием является порядок пространственного соединения этих строительных блоков».
Что изменило открытие ДНК в нашей жизни?
В 1969 году учёные впервые синтезировали искусственный фермент, в 1971 году — искусственный ген.
В конце XX века стало возможным создание полностью искусственных микроорганизмов. Так, в лабораториях были созданы искусственные бактерии, вырабатывающие необычные для них аминокислоты, а также жизнеспособные «синтетические» вирусы.
Ведутся работы по созданию более сложных искусственных организмов — растений и животных.
Изучение структуры и биохимии ДНК привело к созданию методики модификации генома и клонирования.
В 1980 году был выдан первый патент на проведение экспериментов с генами млекопитающих, а год спустя была создана трансгенная мышь с искусственно модифицированным геномом. В 1996 году на свет появилось первое клонированное млекопитающее — овечка Долли, потом к ней присоединились клонированные мыши, крысы, коровы и обезьяны.
В 2002 году был успешно завершён проект «Геном человека», в ходе которого была создана полная генетическая карта человеческих клеток. И в том же году начались попытки клонирования человека, хотя пока ни одна из них не завершена (по крайней мере, научные данные об успешном клонировании человека отсутствуют).
Ещё в 1978 году был создан инсулин, практически полностью идентичный человеческому, а потом его ген был внедрён в геном бактерий, превратившихся в «фабрику инсулина».
В 1990 году впервые был опробован метод генной терапии, который позволил спасти жизнь четырёхлетней девочке, страдавшей тяжёлым расстройством иммунитета. Сейчас полным ходом идёт изучение генетических механизмов развития самых разных заболеваний — от рака до артрита — и поиск методов исправления вызывающих их генетических «ошибок».
А всего в клинической практике применяется более 350 препаратов и вакцин, при создании которых используется генная инженерия.
Анализ ДНК нашёл широкое применение даже в криминалистике. Он используется во время судебных процессов по признанию отцовства (кстати, этот метод стал настоящим подарком для музыкантов, политиков и актёров, которые были вынуждены доказывать в суде свою непричастность к рождению приписываемых им детей), а также для установления личности преступника. Стоит отметить, что о подобной возможности использования ДНК говорил ещё сам Джеймс Уотсон, предлагавший создать базу данных, в которую вошли бы персональные структуры ДНК всех жителей планеты, что позволило бы ускорить процесс идентификации преступников и их жертв.
С помощью ДНК можно «ловить» не только преступников, но и, например, наркотики или биологическое оружие. Американские криминалисты используют систему контроля структуры ДНК растений-наркотиков для создания базы данных обо всех разновидностях марихуаны. Эта база позволит отследить источник практически любого образца наркотиков. В скором будущем в США начнут применяться основанные на анализе ДНК методы обнаружения биологических атак — планируется установить в общественных местах специальные датчики, которые будут автоматически «вылавливать» из воздуха опасные микроорганизмы и подавать предупреждающий сигнал.
В 1982 году была впервые проведена успешная модификация генома растения. А пять лет спустя на полях появились первые сельскохозяйственные растения с модифицированным геномом (это были помидоры, устойчивые к вирусным заболеваниям).
Сейчас с помощью генной инженерии выращиваются практически все продукты питания, особенно такие культуры, как соя и кукуруза. С 1996 года, когда началось коммерческое использование генетически модифицированных продуктов, общая площадь их посевов возросла в 50 раз.
Общая площадь посевных площадей под трансгенными культурами в мире в 2005 году составила 90 миллионов га. Правда, правительства многих стран запретили выращивание и ввоз таких продуктов, так как ряд исследований показали, что они могут представлять опасность для здоровья человека (аллергия, поражение репродуктивной функции и др.).
Возможность изучения структуры ДНК позволила придать новый импульс историческим исследованиям.
Так, например, были идентифицированы останки Николая Второго и его семьи, а также подтверждены и опровергнуты некоторые исторические сплетни (в частности, было доказано, что один из основателей США Томас Джефферсон имел незаконнорожденных детей от чернокожей рабыни).
С помощью анализа ДНК удалось проследить происхождение и людей, и целых народов.
Например, было показано, что гены японцев практически идентичны генам одного из племён Центральной Америки. А чернокожие американцы всего за 349 долларов могут узнать, из какого района Африки и даже из какого племени происходили их предки, привезённые на невольничьих кораблях много лет назад.
Что даст нам ДНК в ближайшем будущем?
Очевидно, это будет клонирование человека и его органов, что решит проблему нехватки донорских сердец и лёгких для пересадки. Появятся новые лекарства, благодаря которым уйдут в прошлое неизлечимые генетические заболевания.