Физико-химические особенности молекулы воды
1. Небольшой размер молекул ( легко проникает через клеточные мембраны по градиенту концентрации, поры )
2. Способность к электролитической диссоциации ( НОН = Н+ + ОН+ )
3. Дипольная структура ( асимметричное распределение зарядов атомов + и — )
4. Способность к образованию Н — связей ( благодаря им все молекулы природной и клеточной воды ассоциированы , отдельные молекулы только при температуре 4000 С ); Н — связи в 20 раз слабее ковалентных
5. Высокая теплота испарения ( охлаждение организма )
6. Максимальная плотность при температуре 4 0 С (занимает минимальный объём)
7. Способность растворять газы (О2 , СО2 и др.)
8. Высокая теплопроводность (быстрое и равномерное распределение тепла)
9. Несжимаемость (придание формы сочным органам и тканям )
10. Большая удельная теплоёмкость (самая большая из всех известных жидкостей)
- защита тканей от быстрого и сильного повышения температуры
- избыточная энергия (тепло) расходуется на разрыв Н — связей
11. Большая теплота плавления (уменьшает вероятность замерзания содержимого клеток и окружающих её жидкостей )
12. Поверхностное натяжение и когезия (самое большое из всех жидкостей)
Когезия —сцепление молекул физического тела под действием сил притяжения
- обеспечивает движение воды по сосудам ксилемы (проводящей ткани растений)
- передвижение растворов по тканям (восходящий и нисходящий токи по растению , кровообращение и т. д.)
13. Прозрачность в видимом спектре (фотосинтез , испарение)
Биологические функции воды
- все живые клетки могут существовать только в жидкой среде
1. Вода — универсальный растворитель
q По степени растворимости вещества разделяются на :
Гидрофильные ( хорошо растворимы в воде ) — соли , моно — и дисахариды , простые спирты , кислоты , щёлочи , аминокислоты , пептиды
- гидрофильность определяется наличием групп атомов ( радикалов ) — ОН- , СООН- , NН2- и др .
Гидрофобные (плохо растворимые или нерастворимые в воде ) — липиды , жиры , жироподобные вещества , каучук, некоторые органические растворители ( бензол , эфир ) , жирные кислот , полисахариды, глобулярные белки
- гидрофобность определяется наличием неполярных молекулярных группировок :
СН3 — , СН2 —
- гидрофобные вещества могут разделять водные растворы на отдельные компартаменты(фракции)
- гидрофобные вещества отталкиваются водой и притягиваются друг к другу (гидрофобные взаимодействия )
Амфифильные – фосфолипиды , жирные кислоты
- имеют в составе молекулы и ОН- , NН2- , СООН- и СН3- , СН2 — СН3-
- в волных растворах образуют бимолекулярный слой
2. Обеспечиваеттургорные явления в растительных клетках
Тургор — упругость растительных клеток , тканей и органов создаваемое внутриклеточной жидкостью
- обуславливает форму, упругость клеток и рост клеток, движения устьиц, транспирацию (испарение воды ), всасывание воды корнями
3. Среда для осуществления диффузии
4. Обуславливает осмотическое давление и осморегуляцию
Осмос —процесс диффузии воды и растворённых в ней химических веществ сквозь полупроницаемую мембрану по градиенту концентрации (в сторону повышенной концентраци)
- лежит в основе транспорта гидрофильных веществ через мембрану клетки , всасывании продуктов пищеварения в кишечнике, воды корнями и т. д.
5. Поступление веществ в клетку (в основном в виде водного раствора) — эндоцитоз
6. Выведение продуктов обмена веществ (метаболитов) из клетки – экзоцитоз, экскреция
- осуществляется преимущественно в виде водных растворов
7. Создаёт и поддерживает химическую среду для физиологических и биохимических процессов — const pH+ — строгий гомеостаз для оптимальной реализации функций ферментов
8. Создаёт среду для протекания всех химических реакций обмена веществ (большая часть протекает только в виде водных растворов)
9. Вода — химический реагент (важнейший метаболит)
- реакции гидролиза, расщепления и пищеварения белков, углеводов, липидов, запасных биополимеров, макроэргов – АТФ, нуклеиновых кислот
- участвует в реакциях синтеза , окислительно-восстановительные реакциях
13. Основа образования жидкой внутренней среды организма — крови , лимфы , тканевой жидкости , ликвора
14. Обеспечивает транспорт неорганических ионов и органических молекул в клетке и организме ( по жидким средам организма , цитоплазме, проводящей ткани — ксилеме , флоэме
15. Источник кислорода , выделяющегося при фотосинтезе
16. Донор атомов водорода , необходимого для восстановления продуктов ассимиляции СО2 в процессе фотосинтеза
17. Терморегуляция (поглощение или выделение тепла вследствие разрыва или образования водородных связей) — const to C
18. Опорная функция ( гидростатистический скелет у животных )
19. Защитная функция (слезная жидкость, слизь)
20. Служит средой, в которой происходит оплодотворение
Липиды: что это и функции
Липиды — это жироподобные органические соединения, нерастворимые в воде, но хорошо растворимые в неполярных растворителях (эфире, бензине, бензоле, хлороформе и др.). Липиды принадлежат к простейшим биологическим молекулам.
В химическом отношении большинство липидов представляет собой сложные эфиры высших карбоновых кислот и ряда спиртов.
Наиболее известны среди них жиры. Каждая молекула жира образована молекулой трехатомного спирта глицерола и присоединенными к ней эфирными связями трех молекул высших карбоновых кислот. Согласно принятой номенклатуре, жиры называют триацилглщеролами.
Атомы углерода в молекулах высших карбоновых кислот могут быть соединены друг с другом как простыми, так и двойными связями.
Из предельных (насыщенных) высших карбоновых кислот наиболее часто в состав жиров входят пальмитиновая, стеариновая, арахиновая; из непредельных (ненасыщенных) — олеиновая и линолевая.
Степень ненасыщенности и длина цепей высших карбоновых кислот (т. е. число атомов углерода) определяют физические свойства того или иного жира.
Жиры с короткими и непредельными кислотными цепями имеют низкую температуру плавления. При комнатной температуре это жидкости (масла) либо мазеподобные вещества (жиры). И наоборот, жиры с длинными и насыщенными цепями высших карбоновых кислот при комнатной температуре становятся твердыми.
Вот почему при гидрировании (насыщении кислотных цепей атомами водорода по двойным связям) жидкое арахисовое масло, например, становится мазеобразным, а подсолнечное масло превращается в твердый маргарин. По сравнению с обитателями южных широт в организме животных, обитающих в холодном климате (например, у рыб арктических морей), обычно содержится больше ненасыщенных триацилглицеролов. По этой причине тело их остается гибким и при низких температурах.
В фосфолипидах одна из крайних цепей высших карбоновых кислот триацилглицерола замещена на группу, содержащую фосфат.
Фосфолипиды имеют полярные головки и неполярные хвосты. Группы, образующие полярную головку, гидрофильны, а неполярные хвостовые группы гидрофобны. Двойственная природа этих липидов обусловливает их ключевую роль в организации биологических мембран.
Еще одну группу липидов составляют стероиды (стеролы). Эти вещества построены на основе спирта холестерола. Стеролы плохо растворимы в воде и не содержат высших карбоновых кислот. К ним относятся желчные кислоты, холестерол, половые гар-моны, витамин D и др.
К липидам также относятся терпены (ростовые вещества растений — гиббереллины; каротиноиды — фотосинтетичские пигменты; эфирные масла растений, а также воска).
Липиды могут образовывать комплексы с другими биологическими молекулами — белками и сахарами.
Функции липидов следующие:
Структурная.
Фосфолипиды вместе с белками образуют биологические мембраны. В состав мембран входят также стеролы.
Энергетическая. При окислении жиров высвобождается большое количество энергии, которая идет на образование АТФ.
В форме липидов хранится значительная часть энергетических запасов организма, которые расходуются при недостатке питательных веществ. Животные, впадающие в спячку, и растения накапливают жиры и масла и расходуют их на поддержание процессов жизнедеятельности. Высокое содержание липидов в семенах растений обеспечивает развитие зародыша и проростка до их перехода к самостоятельному питанию.
Семена многих растений (кокосовой пальмы, клещевины, подсолнечника, сои, рапса и др.) служат сырьем для получения растительного масла промышленным способом.
Защитная и теплоизоляционная.
Накапливаясь в подкожной клетчатке и вокруг некоторых органов (почек, кишечника), жировой слой защищает организм животных и его отдельные органы от механических повреждений. Кроме того, благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет, например, многим животным обитать в условиях холодного климата.
У китов, кроме того, он играет еще и другую роль — способствует плавучести.
Смазывающая и водоотталкивающая. Воск покрывает кожу, шерсть, перья, делает их более эластичными и предохраняет от влаги.
Восковой налет имеют листья и плоды многих растений.
Регуляторная. Многие гормоны являются производными хо-лестерола, например половые (тестостерон у мужчин и прогестерон у женщин) и кортикостероиды (альдостерон). Производные холестерола, витамин D играют ключевую роль в обмене кальция и фосфора. Желчные кислоты участвуют в процессах пищеварения (эмульгирование жиров) и всасывания высших карбоновых кислот.
Липиды являются также источником образования метаболической воды.
Окисление 100 г жира дает примерно 105 г воды. Эта вода очень важна для некоторых обитателей пустынь, в частности для верблюдов, способных обходиться без воды в течение 10—12 суток: жир, запасенный в горбе, используется именно в этих целях. Необходимую для жизнедеятельности воду медведи, сурки и другие животные, впадающие в спячку, получают в результате окисления жира.
В миелиновых оболочках аксонов нервных клеток липиды являются изоляторами при проведении нервных импульсов.
Растворимые в воде углеводы
Функции растворимых углеводов: транспортная, защитная, сигнальная, энергетическая.
Моносахариды: глюкоза – основной источник энергии для клеточного дыхания. Фруктоза – составная часть нектара цветов и фруктовых соков.
Рибоза и дезоксирибоза – структурные элементы нуклеотидов, являющихся мономерами РНК и ДНК.
Дисахариды: сахароза (глюкоза + фруктоза) – основной продукт фотосинтеза, транспортируемый в растениях. Лактоза (глюкоза + галактоза) – входит в состав молока млекопитающих.
Мальтоза (глюкоза + глюкоза) – источник энергии в прорастающих семенах.
Полимерные углеводы:
крахмал, гликоген, целлюлоза, хитин.
Они не растворимы в воде.
Функции полимерных углеводов: структурная, запасающая, энергетическая, защитная.
Крахмал состоит из разветвленных спирализованных молекул, образующих запасные вещества в тканях растений.
Целлюлоза – полимер, образованный остатками глюкозы, состоящими из нескольких прямых параллельных цепей, соединенных водородными связями.
Такая структура препятствует проникновению воды и обеспечивает устойчивость целлюлозных оболочек растительных клеток.
Хитин состоит из аминопроизводных глюкозы. Основной структурный элемент покровов членистоногих и клеточных стенок грибов.
Гликоген – запасное вещество животной клетки.
Гликоген еще более ветвистый, чем крахмал и хорошо растворимы в воде.
Липиды – сложные эфиры жирных кислот и глицерина. Нерастворимы в воде, но растворимы в неполярных растворителях.
Присутствуют во всех клетках. Липиды состоят из атомов водорода, кислорода и углерода. Виды липидов: жиры, воска, фосфолипиды.
Функции липидов:
Запасающая – жиры, откладываются в запас в тканях позвоночных животных.
Энергетическая – половина энергии, потребляемой клетками позвоночных животных в состоянии покоя, образуется в результате окисления жиров.
Жиры используются и как источник воды. Энергетический эффект от расщепления 1 г жира – 39 кДж, что в два раза больше энергетического эффекта от расщепления 1 г глюкозы или белка.
Защитная – подкожный жировой слой защищает организм от механических повреждений.
Структурная – фосфолипиды входят в состав клеточных мембран.
Теплоизоляционная – подкожный жир помогает сохранить тепло.
Электроизоляционная – миелин, выделяемый клетками Шванна (образуют оболочки нервных волокон), изолирует некоторые нейроны, что во много раз ускоряет передачу нервных импульсов.
Питательная – некоторые липидоподобные вещества способствуют наращиванию мышечной массы, поддержанию тонуса организма.
Смазывающая – воски покрывают кожу, шерсть, перья и предохраняют их от воды.
Восковым налетом покрыты листья многих растений, воск используется в строительстве пчелиных сот.
Гормональная – гормон надпочечников – кортизон и половые гормоны имеют липидную природу.
Белки, их строение и функции
Белки – это биологические гетерополимеры, мономерами которых являются аминокислоты.
Белки синтезируются в живых организмах и выполняют в них определенные функции.
В состав белков входят атомы углерода, кислорода, водорода, азота и иногда серы.
Мономерами белков являются аминокислоты – вещества, имеющие в своем составе неизменяемые части аминогруппу NH2 и карбоксильную группу СООН и изменяемую часть – радикал.
Именно радикалами аминокислоты отличаются друг от друга.
Аминокислоты обладают свойствами кислоты и основания (они амфотерны), поэтому могут соединяться друг с другом. Их количество в одной молекуле может достигать нескольких сотен. Чередование разных аминокислот в разной последовательности позволяет получать огромное количество различных по структуре и функциям белков.
В белках встречается 20 видов различных аминокислот, некоторые из которых животные синтезировать не могут.
Они получают их от растений, которые могут синтезировать все аминокислоты. Именно до аминокислот расщепляются белки в пищеварительных трактах животных. Из этих аминокислот, поступающих в клетки организма, строятся его новые белки.
Структура белковой молекулы
Под структурой белковой молекулы понимают ее аминокислотный состав, последовательность мономеров и степень скрученности молекулы, которая должна умещаться в различных отделах и органоидах клетки, причем не одна, а вместе с огромным количеством других молекул.
Последовательность аминокислот в молекуле белка образует его первичную структуру.
Она зависит от последовательности нуклеотидов в участке молекулы ДНК (гене), кодирующем данный белок. Соседние аминокислоты связаны пептидными связями, возникающими между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты.
Длинная молекула белка сворачивается и приобретает сначала вид спирали.
Так возникает вторичная структура белковой молекулы. Между СО и NH – группами аминокислотных остатков, соседних витков спирали, возникают водородные связи, удерживающие цепь.
Молекула белка сложной конфигурации в виде глобулы (шарика), приобретает третичную структуру. Прочность этой структуры обеспечивается гидрофобными, водородными, ионными и дисульфидными S-S связями.
Некоторые белки имеют четвертичную структуру, образованную несколькими полипептидными цепями (третичными структурами).
Четвертичная структура так же удерживается слабыми нековалентными связями – ионными, водородными, гидрофобными. Однако прочность этих связей невелика и структура может быть легко нарушена. При нагревании или обработке некоторыми химическими веществами белок подвергается денатурации и теряет свою биологическую активность.
Нарушение четвертичной, третичной и вторичной структур обратимо. Разрушение первичной структуры необратимо.
В любой клетке есть сотни белковых молекул, выполняющих различные функции.
Кроме того, белки имеют видовую специфичность. Это означает, что каждый вид организмов обладает белками, не встречающимися у других видов. Это создает серьезные трудности при пересадке органов и тканей от одного человека к другому, при прививках одного вида растений на другой и т.д.
Функции белков
Каталитическая (ферментативная) – белки ускоряют все биохимические процессы, идущие в клетке: расщепление питательных веществ в пищеварительном тракте, участвуют в реакциях матричного синтеза.
Каждый фермент ускоряет одну и только одну реакцию (как в прямом, так и в обратном направлении). Скорость ферментативных реакций зависит от температуры среды, уровня ее рН, а также от концентраций реагирующих веществ и концентрации фермента.
Транспортная – белки обеспечивают активный транспорт ионов через клеточные мембраны, транспорт кислорода и углекислого газа, транспорт жирных кислот.
Защитная – антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь.
Структурная – одна из основных функций белков.
Белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин – хрящи и сухожилия.
Сократительная – обеспечивается сократительными белками – актином и миозином.
Сигнальная – белковые молекулы могут принимать сигналы и служить их переносчиками в организме (гормонами). Следует помнить, что не все гормоны являются белками.
Энергетическая – при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры.
Нуклеиновые кислоты
Нуклеиновые кислоты были открыты в 1868 г. швейцарским ученым Ф. Мишером. В организмах существует несколько видов нуклеиновых кислот, которые встречаются в различных органоидах клетки – ядре, митохондриях, пластидах. К нуклеиновым кислотам относятся ДНК, и-РНК, т-РНк, р-РНК.
Дезоксирибонуклеиновая кислота (ДНК) – линейный полимер, имеющий вид двойной спирали, образованной парой антипараллельных комплементарных (соответствующих друг другу по конфигурации) цепей.
Пространственная структура молекулы ДНК была смоделирована американскими учеными Джеймсом Уотсоном и Френсисом Криком в 1953 г.
Мономерами ДНК являются нуклеотиды. Каждый нуклеотид ДНК состоит из пуринового (А – аденин или Г – гуанин) или пиримидинового (Т – тимин или Ц – цитозин) азотистого основания, пятиуглеродного сахара – дезоксирибозы и фосфатной группы.
Нуклеотиды в молекуле ДНК обращены друг к другу азотистыми основаниями и объединены парами в соответствии с правилами комплементарности: напротив аденина расположен тимин, напротив гуанина – цитозин.
Пара А – Т соединена двумя водородными связями, а пара Г – Ц – тремя. При репликации (удвоении) молекулы ДНК водородные связи рвутся и цепи расходятся и на каждой из них синтезируется новая цепь ДНК. Остов цепей ДНК образован сахарофосфатными остатками.
Последовательность нуклеотидов в молекуле ДНК определяет ее специфичность, а также специфичность белков организма, которые кодируются этой последовательностью.
Эти последовательности индивидуальны и для каждого вида организмов, и для отдельных особей.
Пример: дана последовательность нуклеотидов ДНК : ЦГА – ТТА – ЦАА.
На информационной РНК (и-РНК) будет синтезирована цепь ГЦУ – ААУ – ГУУ, в результате чего выстроится цепочка аминокислот: аланин – аспарагин – валин.
При замене нуклеотидов в одном из триплетов или их перестановке этот триплет будет кодировать другую аминокислоту, а следовательно изменится и белок, кодируемый данным геном.
Изменения в составе нуклеотидов или их последовательности называются мутацией.
Рибонуклеиновая кислота (РНК) – линейный полимер, состоящий из одной цепи нуклеотидов.
В составе РНК тиминовый нуклеотид замещен на урациловый (У). Каждый нуклеотид РНК содержит пятиуглеродный сахар – ри– бозу, одно из четырех азотистых оснований и остаток фосфорной кислоты.
Виды РНК.
Матричная, или информационная, РНК.
Синтезируется в ядре при участии фермента РНК-полимеразы. Комплементарна участку ДНК, на котором происходит синтез. Ее функция – снятие информации с ДНК и передача ее к месту синтеза белка – на рибосомы.
Составляет 5% РНК клетки. Рибосомная РНК – синтезируется в ядрышке и входит в состав рибосом. Составляет 85% РНК клетки.
Транспортная РНК (более 40 видов). Транспортирует аминокислоты к месту синтеза белка.
Имеет форму клеверного листа и состоит из 70—90 нуклеотидов.
Аденозинтрифосфорная кислота – АТФ. АТФ представляет собой нуклеотид, состоящий из азотистого основания – аденина, углевода рибозы и трех остатков фосфорной кислоты, в двух из которых запасается большое количество энергии. При отщеплении одного остатка фосфорной кислоты освобождается 40 кДж/моль энергии.
Сравните эту цифру с цифрой, обозначающей количество выделенной энергии 1 г глюкозы или жира. Способность запасать такое количество энергии делает АТФ ее универсальным источником.
Синтез АТФ происходит в основном в митохондриях.
II. Метаболизм: энергетический и пластический обмен, их взаимосвязь. Ферменты, их химическая природа, роль в метаболизме. Стадии энергетического обмена. Брожение и дыхание. Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь.