Растворимые в воде углеводы их характеристика

Физико-химические особенности молекулы воды

1. Небольшой размер молекул ( легко проникает через клеточные мембраны по градиенту концентрации, поры )

2. Способность к электролитической диссоциации ( НОН = Н+ + ОН+ )

3. Дипольная структура ( асимметричное распределение зарядов атомов + и — )

4. Способность к образованию Н — связей ( благодаря им все молекулы природной и клеточной воды ассоциированы , отдельные молекулы только при температуре 4000 С ); Н — связи в 20 раз слабее ковалентных

5. Высокая теплота испарения ( охлаждение организма )

6. Максимальная плотность при температуре 4 0 С (занимает минимальный объём)

7. Способность растворять газы (О2 , СО2 и др.)

8. Высокая теплопроводность (быстрое и равномерное распределение тепла)

9. Несжимаемость (придание формы сочным органам и тканям )

10. Большая удельная теплоёмкость (самая большая из всех известных жидкостей)

  • защита тканей от быстрого и сильного повышения температуры
  • избыточная энергия (тепло) расходуется на разрыв Н — связей

11. Большая теплота плавления (уменьшает вероятность замерзания содержимого клеток и окружающих её жидкостей )

12. Поверхностное натяжение и когезия (самое большое из всех жидкостей)

Когезия —сцепление молекул физического тела под действием сил притяжения

  • обеспечивает движение воды по сосудам ксилемы (проводящей ткани растений)
  • передвижение растворов по тканям (восходящий и нисходящий токи по растению , кровообращение и т. д.)

13. Прозрачность в видимом спектре (фотосинтез , испарение)

Биологические функции воды

  • все живые клетки могут существовать только в жидкой среде

1. Вода — универсальный растворитель

q По степени растворимости вещества разделяются на :

Гидрофильные ( хорошо растворимы в воде ) — соли , моно — и дисахариды , простые спирты , кислоты , щёлочи , аминокислоты , пептиды

  • гидрофильность определяется наличием групп атомов ( радикалов ) — ОН- , СООН- , NН2- и др .

Гидрофобные (плохо растворимые или нерастворимые в воде ) — липиды , жиры , жироподобные вещества , каучук, некоторые органические растворители ( бензол , эфир ) , жирные кислот , полисахариды, глобулярные белки

  • гидрофобность определяется наличием неполярных молекулярных группировок :

СН3 — , СН2 —

  • гидрофобные вещества могут разделять водные растворы на отдельные компартаменты(фракции)
  • гидрофобные вещества отталкиваются водой и притягиваются друг к другу (гидрофобные взаимодействия )

Амфифильные – фосфолипиды , жирные кислоты

  • имеют в составе молекулы и ОН- , NН2- , СООН- и СН3- , СН2 — СН3-
  • в волных растворах образуют бимолекулярный слой

2. Обеспечиваеттургорные явления в растительных клетках

Тургорупругость растительных клеток , тканей и органов создаваемое внутриклеточной жидкостью

  • обуславливает форму, упругость клеток и рост клеток, движения устьиц, транспирацию (испарение воды ), всасывание воды корнями

3. Среда для осуществления диффузии

4. Обуславливает осмотическое давление и осморегуляцию

Осмос —процесс диффузии воды и растворённых в ней химических веществ сквозь полупроницаемую мембрану по градиенту концентрации (в сторону повышенной концентраци)

  • лежит в основе транспорта гидрофильных веществ через мембрану клетки , всасывании продуктов пищеварения в кишечнике, воды корнями и т. д.

5. Поступление веществ в клетку (в основном в виде водного раствора) — эндоцитоз

6. Выведение продуктов обмена веществ (метаболитов) из клеткиэкзоцитоз, экскреция

  • осуществляется преимущественно в виде водных растворов

7. Создаёт и поддерживает химическую среду для физиологических и биохимических процессов — const pH+ — строгий гомеостаз для оптимальной реализации функций ферментов

8. Создаёт среду для протекания всех химических реакций обмена веществ (большая часть протекает только в виде водных растворов)

9. Вода — химический реагент (важнейший метаболит)

  • реакции гидролиза, расщепления и пищеварения белков, углеводов, липидов, запасных биополимеров, макроэргов – АТФ, нуклеиновых кислот
  • участвует в реакциях синтеза , окислительно-восстановительные реакциях

13. Основа образования жидкой внутренней среды организма — крови , лимфы , тканевой жидкости , ликвора

14. Обеспечивает транспорт неорганических ионов и органических молекул в клетке и организме ( по жидким средам организма , цитоплазме, проводящей ткани — ксилеме , флоэме

15. Источник кислорода , выделяющегося при фотосинтезе

16. Донор атомов водорода , необходимого для восстановления продуктов ассимиляции СО2 в процессе фотосинтеза

17. Терморегуляция (поглощение или выделение тепла вследствие разрыва или образования водородных связей) — const to C

18. Опорная функция ( гидростатистический скелет у животных )

19. Защитная функция (слезная жидкость, слизь)

20. Служит средой, в которой происходит оплодотворение

Липиды: что это и функции

Липиды — это жироподобные органические соединения, нерастворимые в воде, но хорошо растворимые в неполярных растворителях (эфире, бензине, бензоле, хлороформе и др.). Липиды принадлежат к простейшим биологическим молекулам.

В химическом отношении большинство липидов представляет собой сложные эфиры высших карбоновых кислот и ряда спиртов.

Наиболее известны среди них жиры. Каждая молекула жира образована молекулой трехатомного спирта глицерола и присоединенными к ней эфирными связями трех молекул высших карбоновых кислот. Согласно принятой номенклатуре, жиры называют триацилглщеролами.

Атомы углерода в молекулах высших карбоновых кислот могут быть соединены друг с другом как простыми, так и двойными связями.

Из предельных (насыщенных) высших карбоновых кислот наиболее часто в состав жиров входят пальмитиновая, стеариновая, арахиновая; из непредельных (ненасыщенных) — олеиновая и линолевая.

Степень ненасыщенности и длина цепей высших карбоновых кислот (т. е. число атомов углерода) определяют физические свойства того или иного жира.

Жиры с короткими и непредельными кислотными цепями имеют низкую температуру плавления. При комнатной температуре это жидкости (масла) либо мазеподобные вещества (жиры). И наоборот, жиры с длинными и насыщенными цепями высших карбоновых кислот при комнатной температуре становятся твердыми.

Вот почему при гидрировании (насыщении кислотных цепей атомами водорода по двойным связям) жидкое арахисовое масло, например, становится мазеобразным, а подсолнечное масло превращается в твердый маргарин. По сравнению с обитателями южных широт в организме животных, обитающих в холодном климате (например, у рыб арктических морей), обычно содержится больше ненасыщенных триацилглицеролов. По этой причине тело их остается гибким и при низких температурах.

В фосфолипидах одна из крайних цепей высших карбоновых кислот триацилглицерола замещена на группу, содержащую фосфат.

Фосфолипиды имеют полярные головки и неполярные хвосты. Группы, образующие полярную головку, гидрофильны, а неполярные хвостовые группы гидрофобны. Двойственная природа этих липидов обусловливает их ключевую роль в организации биологических мембран.

Еще одну группу липидов составляют стероиды (стеролы). Эти вещества построены на основе спирта холестерола. Стеролы плохо растворимы в воде и не содержат высших карбоновых кислот. К ним относятся желчные кислоты, холестерол, половые гар-моны, витамин D и др.

К липидам также относятся терпены (ростовые вещества растений — гиббереллины; каротиноиды — фотосинтетичские пигменты; эфирные масла растений, а также воска).

Липиды могут образовывать комплексы с другими биологическими молекулами — белками и сахарами.

Функции липидов следующие:

Структурная.

Фосфолипиды вместе с белками образуют биологические мембраны. В состав мембран входят также стеролы.

Энергетическая. При окислении жиров высвобождается большое количество энергии, которая идет на образование АТФ.

В форме липидов хранится значительная часть энергетических запасов организма, которые расходуются при недостатке питательных веществ. Животные, впадающие в спячку, и растения накапливают жиры и масла и расходуют их на поддержание процессов жизнедеятельности. Высокое содержание липидов в семенах растений обеспечивает развитие зародыша и проростка до их перехода к самостоятельному питанию.

Семена многих растений (кокосовой пальмы, клещевины, подсолнечника, сои, рапса и др.) служат сырьем для получения растительного масла промышленным способом.

Защитная и теплоизоляционная.

Накапливаясь в подкожной клетчатке и вокруг некоторых органов (почек, кишечника), жировой слой защищает организм животных и его отдельные органы от механических повреждений. Кроме того, благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет, например, многим животным обитать в условиях холодного климата.

У китов, кроме того, он играет еще и другую роль — способствует плавучести.

Смазывающая и водоотталкивающая. Воск покрывает кожу, шерсть, перья, делает их более эластичными и предохраняет от влаги.

Восковой налет имеют листья и плоды многих растений.

Регуляторная. Многие гормоны являются производными хо-лестерола, например половые (тестостерон у мужчин и прогестерон у женщин) и кортикостероиды (альдостерон). Производные холестерола, витамин D играют ключевую роль в обмене кальция и фосфора. Желчные кислоты участвуют в процессах пищеварения (эмульгирование жиров) и всасывания высших карбоновых кислот.

Липиды являются также источником образования метаболической воды.

Окисление 100 г жира дает примерно 105 г воды. Эта вода очень важна для некоторых обитателей пустынь, в частности для верблюдов, способных обходиться без воды в течение 10—12 суток: жир, запасенный в горбе, используется именно в этих целях. Необходимую для жизнедеятельности воду медведи, сурки и другие животные, впадающие в спячку, получают в результате окисления жира.

В миелиновых оболочках аксонов нервных клеток липиды являются изоляторами при проведении нервных импульсов.

Растворимые в воде углеводы

Функции растворимых углеводов: транспортная, защитная, сигнальная, энергетическая.

Моносахариды: глюкоза – основной источник энергии для клеточного дыхания. Фруктоза – составная часть нектара цветов и фруктовых соков.

Рибоза и дезоксирибоза – структурные элементы нуклеотидов, являющихся мономерами РНК и ДНК.

Дисахариды: сахароза (глюкоза + фруктоза) – основной продукт фотосинтеза, транспортируемый в растениях. Лактоза (глюкоза + галактоза) – входит в состав молока млекопитающих.

Мальтоза (глюкоза + глюкоза) – источник энергии в прорастающих семенах.

Полимерные углеводы:

крахмал, гликоген, целлюлоза, хитин.

Они не растворимы в воде.

Функции полимерных углеводов: структурная, запасающая, энергетическая, защитная.

Крахмал состоит из разветвленных спирализованных молекул, образующих запасные вещества в тканях растений.

Целлюлоза – полимер, образованный остатками глюкозы, состоящими из нескольких прямых параллельных цепей, соединенных водородными связями.

Такая структура препятствует проникновению воды и обеспечивает устойчивость целлюлозных оболочек растительных клеток.

Хитин состоит из аминопроизводных глюкозы. Основной структурный элемент покровов членистоногих и клеточных стенок грибов.

Гликоген – запасное вещество животной клетки.

Гликоген еще более ветвистый, чем крахмал и хорошо растворимы в воде.

Липиды – сложные эфиры жирных кислот и глицерина. Нерастворимы в воде, но растворимы в неполярных растворителях.

Присутствуют во всех клетках. Липиды состоят из атомов водорода, кислорода и углерода. Виды липидов: жиры, воска, фосфолипиды.

Функции липидов:

Запасающая – жиры, откладываются в запас в тканях позвоночных животных.

Энергетическая – половина энергии, потребляемой клетками позвоночных животных в состоянии покоя, образуется в результате окисления жиров.

Жиры используются и как источник воды. Энергетический эффект от расщепления 1 г жира – 39 кДж, что в два раза больше энергетического эффекта от расщепления 1 г глюкозы или белка.

Защитная – подкожный жировой слой защищает организм от механических повреждений.

Структурнаяфосфолипиды входят в состав клеточных мембран.

Теплоизоляционная – подкожный жир помогает сохранить тепло.

Электроизоляционная – миелин, выделяемый клетками Шванна (образуют оболочки нервных волокон), изолирует некоторые нейроны, что во много раз ускоряет передачу нервных импульсов.

Питательная – некоторые липидоподобные вещества способствуют наращиванию мышечной массы, поддержанию тонуса организма.

Смазывающая – воски покрывают кожу, шерсть, перья и предохраняют их от воды.

Восковым налетом покрыты листья многих растений, воск используется в строительстве пчелиных сот.

Гормональная – гормон надпочечников – кортизон и половые гормоны имеют липидную природу.

Белки, их строение и функции

Белки – это биологические гетерополимеры, мономерами которых являются аминокислоты.

Белки синтезируются в живых организмах и выполняют в них определенные функции.

В состав белков входят атомы углерода, кислорода, водорода, азота и иногда серы.

Мономерами белков являются аминокислоты – вещества, имеющие в своем составе неизменяемые части аминогруппу NH2 и карбоксильную группу СООН и изменяемую часть – радикал.

Именно радикалами аминокислоты отличаются друг от друга.

Аминокислоты обладают свойствами кислоты и основания (они амфотерны), поэтому могут соединяться друг с другом. Их количество в одной молекуле может достигать нескольких сотен. Чередование разных аминокислот в разной последовательности позволяет получать огромное количество различных по структуре и функциям белков.

В белках встречается 20 видов различных аминокислот, некоторые из которых животные синтезировать не могут.

Они получают их от растений, которые могут синтезировать все аминокислоты. Именно до аминокислот расщепляются белки в пищеварительных трактах животных. Из этих аминокислот, поступающих в клетки организма, строятся его новые белки.

Структура белковой молекулы

Под структурой белковой молекулы понимают ее аминокислотный состав, последовательность мономеров и степень скрученности молекулы, которая должна умещаться в различных отделах и органоидах клетки, причем не одна, а вместе с огромным количеством других молекул.

Последовательность аминокислот в молекуле белка образует его первичную структуру.

Она зависит от последовательности нуклеотидов в участке молекулы ДНК (гене), кодирующем данный белок. Соседние аминокислоты связаны пептидными связями, возникающими между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты.

Длинная молекула белка сворачивается и приобретает сначала вид спирали.

Так возникает вторичная структура белковой молекулы. Между СО и NH – группами аминокислотных остатков, соседних витков спирали, возникают водородные связи, удерживающие цепь.

Молекула белка сложной конфигурации в виде глобулы (шарика), приобретает третичную структуру. Прочность этой структуры обеспечивается гидрофобными, водородными, ионными и дисульфидными S-S связями.

Некоторые белки имеют четвертичную структуру, образованную несколькими полипептидными цепями (третичными структурами).

Четвертичная структура так же удерживается слабыми нековалентными связями – ионными, водородными, гидрофобными. Однако прочность этих связей невелика и структура может быть легко нарушена. При нагревании или обработке некоторыми химическими веществами белок подвергается денатурации и теряет свою биологическую активность.

Нарушение четвертичной, третичной и вторичной структур обратимо. Разрушение первичной структуры необратимо.

В любой клетке есть сотни белковых молекул, выполняющих различные функции.

Кроме того, белки имеют видовую специфичность. Это означает, что каждый вид организмов обладает белками, не встречающимися у других видов. Это создает серьезные трудности при пересадке органов и тканей от одного человека к другому, при прививках одного вида растений на другой и т.д.

Функции белков

Каталитическая (ферментативная) – белки ускоряют все биохимические процессы, идущие в клетке: расщепление питательных веществ в пищеварительном тракте, участвуют в реакциях матричного синтеза.

Каждый фермент ускоряет одну и только одну реакцию (как в прямом, так и в обратном направлении). Скорость ферментативных реакций зависит от температуры среды, уровня ее рН, а также от концентраций реагирующих веществ и концентрации фермента.

Транспортная – белки обеспечивают активный транспорт ионов через клеточные мембраны, транспорт кислорода и углекислого газа, транспорт жирных кислот.

Защитная – антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь.

Структурная – одна из основных функций белков.

Белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин – хрящи и сухожилия.

Сократительная – обеспечивается сократительными белками – актином и миозином.

Сигнальная – белковые молекулы могут принимать сигналы и служить их переносчиками в организме (гормонами). Следует помнить, что не все гормоны являются белками.

Энергетическая – при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры.

Нуклеиновые кислоты

Нуклеиновые кислоты были открыты в 1868 г. швейцарским ученым Ф. Мишером. В организмах существует несколько видов нуклеиновых кислот, которые встречаются в различных органоидах клетки – ядре, митохондриях, пластидах. К нуклеиновым кислотам относятся ДНК, и-РНК, т-РНк, р-РНК.

Дезоксирибонуклеиновая кислота (ДНК) – линейный полимер, имеющий вид двойной спирали, образованной парой антипараллельных комплементарных (соответствующих друг другу по конфигурации) цепей.

Пространственная структура молекулы ДНК была смоделирована американскими учеными Джеймсом Уотсоном и Френсисом Криком в 1953 г.

Мономерами ДНК являются нуклеотиды. Каждый нуклеотид ДНК состоит из пуринового (А – аденин или Г – гуанин) или пиримидинового (Т – тимин или Ц – цитозин) азотистого основания, пятиуглеродного сахара – дезоксирибозы и фосфатной группы.

Нуклеотиды в молекуле ДНК обращены друг к другу азотистыми основаниями и объединены парами в соответствии с правилами комплементарности: напротив аденина расположен тимин, напротив гуанина – цитозин.

Пара А – Т соединена двумя водородными связями, а пара Г – Ц – тремя. При репликации (удвоении) молекулы ДНК водородные связи рвутся и цепи расходятся и на каждой из них синтезируется новая цепь ДНК. Остов цепей ДНК образован сахарофосфатными остатками.

Последовательность нуклеотидов в молекуле ДНК определяет ее специфичность, а также специфичность белков организма, которые кодируются этой последовательностью.

Эти последовательности индивидуальны и для каждого вида организмов, и для отдельных особей.

Пример: дана последовательность нуклеотидов ДНК : ЦГА – ТТА – ЦАА.

На информационной РНК (и-РНК) будет синтезирована цепь ГЦУ – ААУ – ГУУ, в результате чего выстроится цепочка аминокислот: аланин – аспарагин – валин.

При замене нуклеотидов в одном из триплетов или их перестановке этот триплет будет кодировать другую аминокислоту, а следовательно изменится и белок, кодируемый данным геном.

Изменения в составе нуклеотидов или их последовательности называются мутацией.

Рибонуклеиновая кислота (РНК) – линейный полимер, состоящий из одной цепи нуклеотидов.

В составе РНК тиминовый нуклеотид замещен на урациловый (У). Каждый нуклеотид РНК содержит пятиуглеродный сахар – ри– бозу, одно из четырех азотистых оснований и остаток фосфорной кислоты.

Виды РНК.

Матричная, или информационная, РНК.

Синтезируется в ядре при участии фермента РНК-полимеразы. Комплементарна участку ДНК, на котором происходит синтез. Ее функция – снятие информации с ДНК и передача ее к месту синтеза белка – на рибосомы.

Составляет 5% РНК клетки. Рибосомная РНК – синтезируется в ядрышке и входит в состав рибосом. Составляет 85% РНК клетки.

Транспортная РНК (более 40 видов). Транспортирует аминокислоты к месту синтеза белка.

Имеет форму клеверного листа и состоит из 70—90 нуклеотидов.

Аденозинтрифосфорная кислота – АТФ. АТФ представляет собой нуклеотид, состоящий из азотистого основания – аденина, углевода рибозы и трех остатков фосфорной кислоты, в двух из которых запасается большое количество энергии. При отщеплении одного остатка фосфорной кислоты освобождается 40 кДж/моль энергии.

Сравните эту цифру с цифрой, обозначающей количество выделенной энергии 1 г глюкозы или жира. Способность запасать такое количество энергии делает АТФ ее универсальным источником.

Синтез АТФ происходит в основном в митохондриях.

II. Метаболизм: энергетический и пластический обмен, их взаимосвязь. Ферменты, их химическая природа, роль в метаболизме. Стадии энергетического обмена. Брожение и дыхание. Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь.

cyber
Оцените автора
CyberLesson | Быстро освоить программирование Pascal и C++. Решение задач Pascal и C++
Добавить комментарий