Строение микротрубочек и их функции

Микротрубочки: строение и функции

Микротрубочки это трубчатые полые образования, лишенные мембраны. Внешний диаметр составляет 24 нм, ширина просвета — 15 нм, толщина стенки — около 5 нм.

В свободном состоянии представлены в цитоплазме, также являются структурными элементами жгутиков, центриолей, веретена деления, ресничек.

Микротрубочки построены из стереотипных белковых субъединиц путем их полимеризации. В любой клетке процессы полимеризации идут параллельно процессам деполимеризации.

Причем соотношение их определяется количеством микротрубочек. Микротрубочки имеют различную устойчивость к разрушающим их факторам, например, к колхицину (это химическое вещество, вызывающее деполимеризацию).

Функции микротрубочек

  • 1)  являются опорным аппаратом клетки;
  • 2)  определяют формы и размеры клетки;
  • 3)  являются факторами направленного перемещения внутриклеточных структур.

Так же как и микрофибриллы, микротрубочки под­вержены функциональной изменчивости.

Для них ха­рактерны самосборка и саморазборка, причем раз­борка происходит до тубулиновых димеров. Соответ­ственно микротрубочки мо­гут быть представлены боль­шим или меньшим количе­ством в связи с преоблада­нием процессов либо саморазборки, либо самосборки микротрубочек из фонда гло­булярного тубулина гиало­плазмы.

Интенсивные про­цессы самосборки микротру­бочек обычно приурочены к местам крепления клеток к субстрату, т. е. к местам усиленной полимеризации фибриллярного актина из глобулярного актина гиало­плазмы.

Такая корреляция степени развития этих двух механохимических систем не случайна и отражает их глубокую функциональную взаимосвязь в целостной опорно-сократимой и транс­портной системе клетки.

Проведенный в последнее время детальный сравнительно-цитологический анализ организации жгутиков сперматозоидов у разных многоклеточных животных показал возможность существенных изменений стандартной формулы 9 + 2 даже у близкородственных животных.

В жгутиках спер­матозоидов некоторых групп животных две центральные микро­трубочки могут отсутствовать, а их роль выполняют цилиндры из электронно-плотного вещества. Среди низших многоклеточ­ных (турбеллярии и близкие к ним группы) подобного рода модификации распределены у отдельных видов животных мо­заично и, вероятно, полифилетичны по своему происхождению, хотя у всех этих видов образуются сходные морфологические структуры.

Еще более значительные модификации постоянных тубулин-динеиновых систем наблюдаются в щупальцах некото­рых простейших. Здесь эта система представлена группой антипараллельных микротрубочек. Динеиновые структуры, связыва­ющие микротрубочки, имеют отличный от динеиновых «рук» рес­ничек и жгутиков характер расположения, хотя принцип рабо­ты динеин-тубулиновой системы ресничек, жгутиков и щупалец простейших, по-видимому, сходен.

Микрофиламенты

Это тонкие и длинные образования, которые обнаруживаются по всей цитоплазме.

Иногда образуют пучки. Виды микро-филаментов:

1)  актиновые. Содержат сократительные белки (актин), обеспечивают клеточные формы движения (например, амебоидные), играют роль клеточного каркаса, участвуют в организации перемещений органелл и участков цитоплазмы внутри клетки;

2)  промежуточные (толщиной 10 нм). Их пучки обнаруживаются по периферии клетки под плазмалеммой и по окружности ядра.

Выполняют опорную (каркасную) роль.

В разных клетках (эпителиальных, мышечных, нервных, фибробластах) построены из разных белков.

Микрофиламенты, как и микротрубочки, построены из субъединиц, поэтому их количество определяется соотношением процессов полимеризации и деполимеризации.

Клетки всех животных, некоторых грибов, водорослей, высших растений характеризуются наличием клеточного центра.

Клеточный центр обычно располагается рядом с ядром.

Он состоит из двух центриолей, каждая из которых представляет собой полый цилиндр диаметром около 150 нм, длиной 300—500 нм.

Центриоли расположены взаимоперпендикулярно.

Стенка каждой центриоли образована 27 микротрубочками, состоящими из белка тубулина. Микротрубочки сгруппированы в 9 триплетов.

Из центриолей клеточного центра во время деления клетки образуются нити веретена деления.

Центриоли поляризуют процесс деления клетки, чем достигается равномерное расхождение сестринских хромосом (хроматид) в анафазе митоза.

Клеточные включения

Так называются непостоянные компоненты в клетке, присутствующие в основном веществе цитоплазмы в виде зерен, гранул или капелек. Включения могут быть окружены мембраной или же не окружаются ею.

В функциональном отношении выделяют три вида включений: запасные питательные вещества (крахмал, гликоген, жиры, белки), секреторные включения (вещества, характерные для железистых клеток, продуцируемые ими, — гормоны желез внутренней секреции и т. п.) и включения специального назначения (в узкоспециализированных клетках, например гемоглобин в эритроцитах).

С помощью электронного микроскопа в цитоплазме эукариот можно увидеть фибриллярную сеть, функции которой связаны с движением внутриклеточного содержимого, перемещением самой клетки, а также в совокупности с другими структурами поддерживается форма клетки.

Одними из таких фибрилл являются микротрубочки (обычно длиной от нескольких микрометров до нескольких миллиметров), представляющие собой длинные тонкие цилиндры (диаметром около 25 нм) с полостью внутри. Их относят к органоидам клетки.

Стенки микротрубочек состоят из спирально упакованных субъединиц белка тубулина, состоящего из двух частей, то есть представляющего собой димер.

Соседние трубочки могут быть связаны между собой выступами своих стенок.

Данный клеточный органоид относится к динамическим структурам, так может нарастать и распадаться (полимеризуется и деполимеризуется). Рост происходит за счет добавления новых тубулиновых субъединиц с одного конца (плюс), а разрушение – с другого (минус-конец). То есть микротрубочки полярны.

В животных клетках (а также у многих простейших) центрами организации микротрубочек являются центриоли. Они сами состоят из девяти триплетов укороченных микротрубочек и располагаются около ядра. От центриолей трубочки радиально расходятся, то есть растут к периферии клетки. У растений центрами организации выступают другие структуры.

Из микротрубочек состоит веретено деления, которое осуществляет расхождение хроматид или хромосом при митозе или мейозе. Из них состоят базальные тельца, лежащие в основании ресничек и жгутиков. Движение веретена, ресничек и жгутиков происходит за счет скольжения трубочек.

Похожей функцией является перемещение ряда клеточных органоидов и частиц (например, секреторных пузырьков, образующихся в аппарате Гольджи, лизосом, даже митохондрий). При этом микротрубочки играют роль своеобразных рельсов.

Специальные моторные белки одним своим концом крепятся к трубочкам, а другим — к органеллам. За счет их движения вдоль трубочек происходит транспорт органелл. При этом одни моторные белки двигаются только от центра к периферии (кинезины), другие (динеины) — от периферии к центру.

Микротрубочки за счет своей жесткости участвуют в формировании опорной системы клетки — цитоскелета. Определяют форму клетки.

Сборка и разборка микротрубочек, а также транспорт по ним идет с затратой энергии.

Расположение микротрубочек

Микро­трубочки располагаются, как правило, в самых глубоких слоях примембранного цитозоля. Поэтому периферические микротру­бочки надлежало бы рассматривать как часть динамичного, организующего микротрубочкового «скелета» клетки.

Однако и сократимые, и скелетные фибриллярные структуры перифериче­ского цитозоля также связаны непосредственно с фибриллярны­ми структурами основной гиалоплазмы клетки.

В функциональ­ном отношении периферическая опорно-сократимая фибрилляр­ная система клетки находится в теснейшем взаимодействии с системой периферических микротрубочек. Это дает нам основа­ние рассматривать последние как часть субмембранной системы клетки.

Белки микротрубочек

Система микротрубочек являет­ся вторым компонентом опорно-сократимого аппарата, находящаяся, как правило, в тес­ном контакте с микрофибриллярным компонентом.

Стенки микро­трубочек образованы в попереч­нике чаще всего 13 димерными глобулами белка, каждая глобу­ла состоит из α- и β-тубулинов (рис. 6). Последние в большин­стве микротрубочек расположены в шахматном порядке. Тубулин составляет 80% белков содержа­щихся в микротрубочках.

Ос­тальные 20% приходятся на до­лю высокомолекулярных белков МАР1, МАР2 и низкомолекуляр­ного тау-фактора. МАР-белки (microtubule-associated proteins- белки, связанные с микротрубоч­ками) и тау-фактор представля­ют собой компоненты, необходи­мые для полимеризации тубулина. В их отсутствие самосборка микротрубочек путем полимери­зации тубулина крайне затруд­нена и образующиеся микротру­бочки сильно отличаются от на­тивных.

Микротрубочки — очень лабильная структура, так, микро­трубочки теплокровных животных, как правило, разрушаются на холоде.

Существуют и холодоустойчивые микротрубочки, например в нейронахцентральной нервной системы позвоноч­ных их количество варьирует от 40 до 60%. Термостабильные и термолабильные микротрубочки не различаются по свойствам входящего в их состав тубулина; по-видимому, эти отличия определяются добавочными белками.

В нативных клет­ках по сравнению с микрофибриллами основная часть микротрубочковой субмем­бранной системы располага­ется в более глубоко лежа­щих участках цитоплазмы.

Принцип работы тубулин-динеинового комплекса

В настоящее время имеется несколько гипотез, объясняю­щих принцип работы тубулин-динеиновой механохимической системы.

Одна из них предполагает, что эта система функцио­нирует по принципу скольжения. Химическая энергия АТФ пре­вращается в механохимическую энергию скольжения одних дублетов микротрубочек по отношению к другим за счет тубулин-динеинового взаимодействия в местах временных контактов динеиновых «рук» с димерами тубулина в стенках микротрубо­чек. Таким образом, в данной механохимической системе, не­смотря на ее существенные особенности по сравнению с актин- миозиновой системой, используется тот же принцип скольже­ния, базирующийся на специфическом взаимодействии основ­ных сократимых белков.

Необходимо отметить и сходные при­знаки в свойствах основных сократимых белков динеина и мио­зина, с одной стороны, и тубулина и актина — с другой. Для динеина и миозина это близкие молекулярные веса и наличие АТФазной активности. Для тубулина и актина помимо сход­ства молекулярных весов характерны близкие аминокислотный состав и первичная структура белковых молекул.

Совокупность перечисленных признаков структурно-биохимической организа­ции актин-миозиновой и тубулин-динеиновой систем позволяет предполагать, что они развились из одной механохимической системы первичных эукариотных клеток и сложились в резуль­тате прогрессивного усложнения их организации.

Взаимодействие актин-миозиновой и тубулин-динеиновой комплекса

Актин-миозиновая и тубулин-динеиновая комплексы, как пра­вило, в большинстве эукариотных клеток объединяются при функционировании в одну систему.

Так, например, в динамич­ном субмембранном аппарате культивируемых in vitro клеток присутствуют обе механохимические системы: и актин-миозино­вая, и тубулин-динеиновая. Возможно, что это связано с осо­бой ролью микротрубочек как организующих и направляющих скелетных образований клетки. С другой стороны, наличие двух аналогичных систем может повышать пластичность сократи­мых внутриклеточных структур, тем более что регуляция ра­боты актин-миозиновой системы принципиально отличается от регуляции работы динеин-тубулиновой системы.

В частности, необходимые для запуска актин-миозиновой системы ионы кальция тормозят, а в высоких концентрациях и нарушают структурную организацию тубулин-динеиновой системы. Материал с сайта http://wiki-med.com

Постоянная смешанная микротрубочковая и актин-миозиновая система обнаружена в субмембранной области таких край­не специализированных образований, как кровяные пластинки млекопитающих, представляющие собой свободно циркулирую­щие в крови участки цитоплазмы полиплоидных клеток мегакариоцитов.

Помимо хорошо развитой в периферической гиа­лоплазме актин-миозиновой фибриллярной системы здесь име­ется мощное кольцо микротрубочек, по-видимому, обеспечиваю­щих поддержание формы этих структур.

Актин-миозиновая си­стема кровяных пластинок играет важную роль в процессе свертывания крови.

Смешанные постоянные актин-миозиновая и тубулин-динеиновая системы, очевидно, широко распространены у высших простейших и, в частности, у инфузорий.

Однако в настоящее время они изучены преимущественно на уровне чисто морфо логического, ультраструктурного анализа. Функциональное взаимодействие названных двух основных механохимически: систем интенсивно исследуется у метазойных клеток в процес­сах митотического деления. Этот вопрос мы подробнее рассмот­рим ниже, при описании процессов репродукции клеток.

cyber
Оцените автора
CyberLesson | Быстро освоить программирование Pascal и C++. Решение задач Pascal и C++
Добавить комментарий