- Строение и функции ограноидов эукариотов: таблица
- Строение эукариотической клетки и функции: таблица
- Прокариоты и эукариоты
- Строение цитоплазмы
- Одномембранные органоиды клетки
- Двумембранные органоиды клетки
- Немембранные органоиды
- Разделение организмов на про- и эукариоты
- Отличия эукариот от прокариот
- Строение и функции органоидов растительных и животных клеток: таблица
Строение и функции ограноидов эукариотов: таблица
Цитоплазма | Внутренняя среда клетки, в которой находится ядро и другие органоиды. Имеет полужидкую, мелкозернистую структуру. |
|
Рибосомы | Мелкие органоиды сферической или эллипсоидной формы диаметром от 15 до 30 нанометров. | Обеспечивают процесс синтеза молекул белка, их сборку из аминокислот. |
Митохондрии | Органоиды, имеющие самую разнообразную форму – от сферической до нитевидной. Внутри митохондрий имеются складки от 0,2 до 0,7 мкм. Внешняя оболочка митохондрий имеет двухмембранную структуру. Наружная мембрана гладкая, а на внутренней имеются выросты крестообразной формы с дыхательными ферментами. |
|
Эндоплазматическая сеть (ЭПС) | Система оболочек в цитоплазме, которая образует каналы и полости. Бывает двух типов: гранулированная, на которой имеются рибосомы и гладкая. |
|
Пластиды (органоиды, свойственные только растительным клеткам) бывают трех видов: | Двухмембранные органоиды | |
Лейкопласты | Бесцветные пластиды, которые содержатся в клубнях, корнях и луковицах растений. | Являются дополнительным резервуаром для хранения питательных веществ. |
Хлоропласты | Органоиды овальной формы, имеющие зеленый цвет. От цитоплазмы отделяются двумя трехслойными мембранами. Внутри хлоропластов находится хлорофилл. | Преобразуют органические вещества из неорганических, используя энергию солнца. |
Хромопласты | Органоиды, от желтого до бурого цвета, в которых накапливается каротин. | Способствуют появлению у растений частей с желтой, оранжевой и красной окраской. |
Лизосомы | Органоиды округлой формы диаметром около 1 мкм, имеющие на поверхности мембрану, а внутри – комплекс ферментов. | Пищеварительная функция. Переваривают питательные частицы и ликвидируют отмершие части клетки. |
Комплекс Гольджи | Может быть разной формы. Состоит из полостей, разграниченных мембранами. Из полостей отходят трубчатые образования с пузырьками на концах. |
|
Клеточный центр | Состоит из центросферы (уплотненного участка цитоплазмы) и центриолей – двух маленьких телец. | Выполняет важную функцию для деления клетки. |
Клеточные включения | Углеводы, жиры и белки, которые являются непостоянными компонентами клетки. | Запасные питательные вещества, которые используются для жизнедеятельности клетки. |
Органоиды движения | Жгутики и реснички (выросты и клетки), миофибриллы (нитевидные образования) и псевдоподии (или ложноножки). | Выполняют двигательную функцию, а также обеспечивают процесс сокращения мышц. |
Органоиды клетки и их наличие зависит от типа клетки. Современная биология делит все клетки (или живые организмы) на два типа: прокариоты и эукариоты.
Прокариоты – это безъядерные клетки или организмы, к которым относятся вирусы, прокариот-бактерии и сине-зеленые водоросли, у которых клетка состоит непосредственно из цитоплазмы, в которой расположена одна хромосома – молекула ДНК (иногда РНК).
Эукариотические клетки имеют ядро, в котором находятся нуклеопротеиды (белок гистон + комплекс ДНК), а также другие органоиды.
К эукариотам относятся большинство современных известных науке одноклеточных и многоклеточных живых организмов (в том числе, и растений).
Строение эукариотической клетки и функции: таблица
Органоиды | Строение и свойства эукариотической клетки | Функции клетки |
Органоиды, характерные для животной и растительной клеток | ||
Плазматическая мембрана | Тонкая пленка 7-10мк, состоящая из двойного слоя фосфолипидов, с включением белков. Гидрофобные (отталкивающие воду) молекулы липидов погружены в толщу мембраны, а гидрофильные — обращены наружу в окружающую водную среду. К некоторым белкам на поверхности клеток прикреплены углеводы; такие белки называют гликопротеинами, они являются рецепторами. Снаружи углеводный слой — гликока-ликс. Белки, гликопротеины и липиды, находящиеся на поверхности разных клеток, очень специфичны и являются указателями типа клеток. С их помощью клетки «узнают» друг друга {например, сперматозоид «узнает» яйцеклетку). Сходное строение имеют внутриклеточные мембраны | — Изолируетклетку от окружающей среды.
— Обеспечивает обмен веществ и энергии между клеткой и внешней средой, движение клеток и сцепление их друг с другом. — Соединяет клетки в ткани. — Клеточная мембрана обладает избирательной проницаемостью, регулирует поступление веществ в клетку, водный баланс, выведение продуктов обмена. — Участвует в фагоцитозе и пиноцитозе. — Большинство мембранных белков служат катализаторами химических реакций, осуществляют транспорт веществ или являются рецепторами |
Цитоплазма | Цитоплазма — коллоидный раствор различных солей и органических веществ — цитозоль. Вода составляет 60-90 % всей массы цитоплазмы. Белки — 10-20 %, а иногда до 70 % сухой массы. Система белковых нитей, пронизывающая цитоплазму называется цитоскелетом. Кроме белков в состав цитоплазмы могут входить липиды 23 %, различные органические 1,5 % и неорганические соединения 1,5 %. Цитоплазма находится в постоянном движении | — Жидкая среда клетки для химических реакций.
— Участвует в передвижении веществ. — Поддерживает тургор клетки. — Терморегуляция. — Механическая функция, за счет цитоскелета |
Ядро — важнейший органоид эукариотической клетки, в прокариотической клетке отсутствует | Окружено двухслойной пористой мембраной, образующей комплекс с остальными мембранами клетки. Содержит хроматин — комплекс ДНК и белка, образует хромосомы в момент деления клетки. Ядрышко — состоит из белка и РНК, может быть несколько. Ядерный сок — кариолимфа — коллоидный раствор органических и неорганических веществ | — Хранение наследственной информации в хромосомах.
— Регуляция синтеза белка и процессов происходящих в клетке. — Транспорт веществ. — Синтез РНК (иРНК, тРНК, рРНК), а также сборка рибосом. — Руководит процессами самовоспроизведения и процессами развития организма |
Эндоплазматическая сеть (ретикулум) | Шероховатый (гранулярный) ретикулум — представляет собой систему мембран, образующих канальцы, цистерны, трубочки, несущую рибосомы. Строение мембран сходно с наружной мембраной и образуете ней единую сеть | — Синтез белка на рибосомах.
— Транспорт веществ по цистернам и трубочкам. — Деление клетки на отдельные секции — компартменты |
Гладкий ретикулум — имеет такое же строение, как и шероховатый, но не несет рибосом | — Участвует в синтезе липидов, белок не синтезируется.
— Остальные функции, сходные с шероховатым ретикулум |
|
Рибосомы | Мельчайшие органоиды клетки диаметром около 20нм. Рибосомы состоят из двух неравных субъединиц (частиц): большой и малой. В состав рибосомы входят рибосомальная РНК и белки. Синтезируются в ядрышке. Объединяются вдоль иРНК в цепочки, образуя полисому | Биосинтез первичной структуры белка по принципу матричного синтеза |
Лизосомы | Представляет собой окруженный одинарной мембраной пузырек диаметром 0,2-0,8мкм, имеет овальную форму. Содержит набор пищеварительных ферментов, синтезированных на рибосомах. Образуется в комплексеГольджи. Прочная мембрана лизосом препятствует проникновению ферментов в цитоплазму. Входит в состав единой мембранной системы клетки | — Пищеварительная — обеспечивает переваривание органических веществ, попавших в клетку при фагоцитозе и линоцитозе
— При голодании лизосомы могут участвовать в растворении органоидов, клеток и частей организма (утрата хвоста у головастика) — автолизе |
|
||
Митохондрии | Двухмембранные органоиды. Наружная мембрана гладкая, а внутренняя образует многочисленные складки и выросты -кристы. Внутри митохондрия заполнена бесструктурным матриксом. В матриксе содержатся молекулы ДНК, РНК, рибосомы. Митохондрии имеют разнообразную форму: округлые, овальные, цилиндрические и палочковидные тельца | — Энергетический и дыхательный центр клеток.
— Освобождение энергии в процессе дыхания. — «Запасание» энергии в виде молекул АТФ. Источником энергии являются органические вещества, окисляющиеся под действием ферментов до СO2 и Н2O |
Клеточный центр — характерен для клеток животных и низших растении | Органоид немембранного строения, состоящий из двух центриолей — цилиндрической формы, расположенных перпендикулярно друг другу. Каждая центриоль имеет вид полого цилиндра, стенка которого образована из 9пар микротрубочек. | Участвуют в делении клеток животных и низших растений, образуя веретено деления |
Аппарат (комплекс) Гольджи | Система уплощенных цистерн (трубочек, полостей), ограниченных двойными мембранами, образующих по краям пузырьки (диктиосомы). В растительных клетках цистерны способны расширяться и превращаться в крупные вакуоли. Входит в единую мембранную систему клетки | — Участвует в транспорте продуктов биосинтеза к поверхности клетки и в выведении их из клетки.
— Вещества упаковываются в пузырьки. — В растениях — участвуют в построении клеточной стенки. — Формирует лизосомы |
Органоиды движения | Микротрубочки — длинные тонкие полые цилиндры, диаметром 25нм. Стенки микротрубочек состоят из белков | — Опорная — образуют внутренний каркас, помогающий клеткам сохранять форму.
— Двигательная — входят в состав ресничек и жгутиков |
Микронити — тонкие структуры, состоящие из тысяч молекул белка, соединенных друг с другом | — Образуют опорно-двигательную систему, называемую цитоскелетом.
— Способствуют току цитоплазмы в клетках |
|
Реснички — многочисленные цитоплазматические выросты на поверхности мембраны — образованы микротрубочками, покрытыми мембраной | Обеспечивают передвижение некоторых одноклеточных организмов и ток жидкости в организмах, удаление частичек пыли (дыхательный реснитчатый эпителий) | |
Жгутики — единичные выросты на поверхности клетки. Реснички и жгутики имеют общую основную структуру: девять пар микротрубочек, расположенных кольцом, две одиночные микротрубочки в центре и базальное тельце в основании | Служат для движения одноклеточным организмам, сперматозоидам,зооспорам | |
Клеточные включения | Непостоянные структуры цитоплазмы. Плотные включения в виде гранул | Содержат запасные питательные вещества (крахмал, жиры, белки, сахар) |
Органоиды, характерные только для растительных клеток | ||
Пластиды — хлоропласты | Содержимое пластид называют стромой. Наружная мембрана гладкая, внутренняя образует пластинчатые апячивания — тилакоиды. Большая часть их укладывается в виде стопки монет и образует граны. | В мембранах гран находится хлорофилл, придающий зеленую окраску и обеспечивающий протекание световой фазы светосинтеза |
Пластиды — лейкопласты | Округлые, бесцветные органоиды, внутренняя мембрана образует 2-3 выроста. На свету преобразовываются в хлоропласты | Служат местом отложения запасных питательных веществ, чаще всего крахмала |
Пластиды — хромопласты | Двухмембранные шарообразные органоиды, шаровидной формы. Содержат пигменты — каротиноиды, окраска желтая, красная, оранжевая | Придают лепесткам цветков, плодам и прицветным листьям окраску, привлекают насекомых-опылителей |
Клеточная оболочка (стенка) | Состоит из целлюлозы, имеет поры. Имеется в клетках грибов, состоит из хитина | Защищает клетку от внешних воздействий, придает прочность, является скелетом растения |
Вакуоль, характерна только для растительных клеток | Мембранная полость, заполненная клеточным соком. Вакуоль является производной эндоплазматической сети. Клеточный сок является водным раствором органических веществ: органических кислот, сахара, солей, белков, дубильных веществ, алкалоидов, пигментов и так далее. | — регуляция водно-солевого обмена;
— поддержание тургорного давления; — накопление продуктов обмена веществ и запасных веществ; — выведение из обмена токсичных веществ |
Прокариоты и эукариоты
Первые организмы, появившиеся 3,0 — 3,5 млрд. лет назад, жили в бескислородных условиях, были анаэробными гетеротрофами.
Они использовали органические вещества абиогенного происхождения в качестве питательных веществ, энергию получали за счет бескислородного окисления и брожения.
Замечательным событием стало появление процесса фотосинтеза, когда для синтеза органических веществ стала использоваться энергия солнечной света.
Бактериальный фотосинтез на первых этапах не сопровождался выделением кислорода (первые фотоавтотрофы, используют углекислый газ как источник углерода и Н2S — как источник водорода).
6СО2 + 12Н2S + Q света = С6Н12О6 + 6S2 + 6Н2О
Позже, у синезеленых, появляется фотосистема, способная расщеплять воду и использовать ее молекулы в качестве доноров водорода.
Начинается фотолиз воды, при котором происходит выделение кислорода. Фотосинтез синезеленых сопровождается накоплением кислорода в атмосфере и образованием озонового экрана.
Кислород в атмосфере остановил процесс абиогенного синтеза органических соединений, но привел к появлению энергетически более выгодного процесса — дыхания. Появляются аэробные бактерии, у которых продукты гликолиза подвергаются дальнейшему окислению с помощью кислорода до углекислого газа и воды.
Симбиоз большой анаэробной клетки (вероятно, относящейся к архебактериям и сохранившей ферменты гликолитического окисления) с аэробными бактериями оказался взаимовыгодным, причем аэробные бактерии со временем утратили самостоятельность и превратились в митохондрии.
Потеря самостоятельности связана с утратой части генов, которые перешли в хромосомный аппарат клетки-хозяина.
Но все же митохондрии сохранили собственный белоксинтезирующий аппарат и способность к размножению.
Важным этапом в эволюции клетки стало появление эукариот, при котором произошло обособление ядра, отделение генетического аппарата клетки от реакций обмена веществ.
Различные способы гетеротрофного питания привели к формированию царства Грибов и царства Животных. У грибов в клеточной стенке присутствует хитин, запасные питательные вещества откладываются в форме гликогена, продуктом метаболизма белков является мочевина.
Симбиоз с цианобактериями привел к появлению хлоропластов.
Хлоропласты так же утратили часть генов и являются полуавтономными органоидами, способными к самовоспроизведению. Их появление привело к развитию по пути с автотрофным типом обмена веществ и обособлению части организмов в царство Растений. Для растений характерным веществом клеточной стенки является клетчатка, запасное вещество откладывается в форме крахмала, характерно наличие крупных вакуолей и у высших растений в клеточном центре отсутствуют центриоли.
В пользу симбиотического происхождения митохондрий и хлоропластов говорят многие факты.
Во-первых, их генетический материал представлен одной кольцевой молекулой ДНК (как и у прокариот), во-вторых, их рибосомы по массе, по строению рРНК и рибосомальных белков близки к таковым у аэробных бактерий и синезеленых. В-третьих, они размножаются как прокариоты и, наконец, механизмы белкового синтеза в митохондриях и бактериях чувствительны к одним антибиотикам (стрептомицину), а циклогексимид блокирует синтез белка в цитоплазме.
Кроме того, известен один вид амеб, которые не имеют митохондрий и живут в симбиозе с аэробными бактериями, а в клетках некоторых растений обнаружены цианобактерии (синезеленые), сходные по строению с хлоропластами.
Дальнейшая эволюция привела к обособлению и сохранению двух империй — Доклеточные и Клеточные. Доклеточные объединены в царство Вирусы, Клеточные — в два надцарства Прокариоты (доядерные) и Эукариоты (ядерные).
Прокариоты входят в царство Дробянок и разделены на три подцарства: самые древние относятся к подцарству Архебактерий, другая группа бактерий относится к подцарству Эубактерий, и в подцарство Синезеленых объединяются прокариоты, способные при фотосинтезе выделять кислород.
Строение цитоплазмы
Цитоплазма представляет собой внутреннее содержимое клетки и состоит из основного вещества (гиалоплазмы) и находящихся в нем разнообразных внутриклеточных структур (органоидов и включений).
Гиалоплазма (матрикс) — водный раствор неорганических и органических веществ, способный изменять свою вязкость и находящийся в постоянном движении.
Цитоплазматические структуры клетки представлены органоидами и включениями.
Органоиды (органеллы) — постоянные и обязательные компоненты большинства клеток, имеющие определенную структуру и выполняющие жизненно важные функции. Включения — непостоянные структуры цитоплазмы в виде гранул (крахмал, гликоген, белки) и капель (жиры).
Органоиды бывают мембранные (одномембранные и двумембранные) и немембранные.
Одномембранные органоиды клетки
К ним относят эндоплазматический ретикулум, аппарат Гольджи, лизосомы, вакуоли, образующие единую мембранную систему клетки.
Эндоплазматический ретикулум (эндоплазматическая сеть) — система соединенных между собой полостей, трубочек и каналов, отграниченных от цитоплазмы одним слоем мембраны и разделяющих цитоплазму клеток на изолированные пространства.
Это необходимо, чтобы отделить множество параллельно идущих реакций. Выделяют шероховатый эндоплазматический ретикулум (на его поверхности расположены рибосомы, на которых синтезируется белок) и гладкий эндоплазматический ретикулум (на его поверхности осуществляется синтез липидов и углеводов).
Аппарат Гольджи (пластинчатый комплекс) представляет собой стопку из 5-20 уплощенных дисковидных мембранных полостей и отшнуровывающихся от них микропузырьков.
Его функция — трансформация, накопление, транспорт поступающих в него веществ к различным внутриклеточным структурам или за пределы клетки. Мембраны аппарата Гольджи способны образовывать лизосомы.
Лизосомы — мембранные пузырьки, содержащие гидролитические ферменты.
Различают первичные и вторичные лизосомы. Первичные лизосомы — отшнуровывающиеся от полостей аппарата Гольджи микропузырьки, окруженные одиночной мембраной и содержащие набор гидролитических ферментов. Вторичные лизосомы образуются после слияния первичных лизосом с субстратом, подлежащим расщеплению.
Ко вторичным лизосомам относят:
- пищеварительные вакуоли — образуются при слиянии первичных лизосом с фагоцитарными и пиноцитарными вакуолями (пищеварительные вакуоли простейших). Их функция — переваривание веществ, поступивших в клетку при эндоцитозе;
- остаточные тельца содержат непереваренный материал. Их функция — накопление непереваренных веществ и, обычно, выведение их наружу посредством экзоцитоза;
- аутолизосомы — образуются при слиянии первичных лизосом с отработанными органоидами. Их функция — разрушение отработанных частей клетки или клетки целиком (аутолиз).
Вакуоли — наполненные жидкостью мембранные мешки в цитоплазме клеток растений. Они образуются из мелких пузырьков, отщепляющихся от эндоплазматического ретикулума. Мембрана вакуоли называется тонопластом, а содержимое полости — клеточным соком. В клеточном соке содержатся запасные питательные вещества, растворы пигментов, отходы жизнедеятельности, гидролитические ферменты.
Вакуоли участвуют в регуляции водно-солевого обмена, создании тургорного давления, накоплении запасных веществ и выведении из обмена токсичных соединений.
Пероксисомы — мембранные пузырьки, содержащие набор ферментов. Ферменты пероксисом (каталаза и др.) нейтрализуют токсичную перекись водорода (H2O2), образующуюся как промежуточный продукт при биохимических реакциях, катализируя ее распад на воду и кислород.
Пероксисомы также участвуют в метаболизме липидов.
Двумембранные органоиды клетки
В клетках эукариот имеются органоиды, изолированные от цитоплазмы двумя мембранами — это митохондрии и пластиды.
Они имеют собственную кольцевую молекулу ДНК, рибосомы мелкого размера и способны делиться. Это послужило основой появления симбиотической теории возникновения эукариот.
Согласно этой теории в прошлом митохондрии и пластиды являлись самостоятельными прокариотами, перешедшими позднее к эндосимбиозу с другими клеточными организмами.
Митохондрии — двумембранные органоиды, присутствующие во всех эукариотических клетках. Могут быть палочковидной, овальной или округлой формы. Содержимое митохондрий (матрикс) ограничено от цитоплазмы двумя мембранами: наружной гладкой и внутренней, образующей складки (кристы).
В митохондриях образуются молекулы АТФ. Для этого используется энергия, выделяющаяся при окислении органических соединений.
Пластиды — двумембранные органоиды, характерные только для клеток фотосинтезирующих эукариотических организмов.
Имеют две мембраны и гомогенное вещество внутри — строму (матрикс). В зависимости от окраски различают следующие виды пластид.
- хлоропласты — зеленые пластиды, в которых протекает процесс фотосинтеза.
Наружная мембрана гладкая; внутренняя — формирует систему плоских пузырьков (тилакоидов), которые собраны в стопки (граны). В мембранах тилакоидов содержатся зеленые пигменты хлорофилла, а также каратиноиды;
- хромопласты — пластиды, содержащие пигменты каротиноиды, придающие им красную, желтую и оранжевую окраску. Они придают яркую окраску цветам и плодам;
- лейкопласты — непигментированные, бесцветные пластиды. Содержатся в клетках подземных или неокрашенных частей растений (корней, корневищ, клубней). Способны накапливать запасные питательные вещества, в первую очередь крахмал, липиды и белки. Лейкопласты могут превращаться в хлоропласты (например, при цветении клубней картофеля) и редко в хромопласты (например, при созревании корнеплода у моркови), а хлоропласты — в хромопласты (например, при созревании плодов).
Немембранные органоиды
К ним относят рибосомы, микротрубочки, микрофиламенты, клеточный центр.
Рибосомы — мелкие органоиды, образованные двумя субъединицами: большой и малой.
Они состоят из белков и рРНК.
Малая субъединица содержит одну молекулу рРНК и белки, большая — три молекулы рРНК и белки. Рибосомы могут либо свободно находиться в цитоплазме, либо прикрепляться к эндоплазматическому ретикулуму. На рибосомах происходит синтез белка. Белки, синтезируемые на рибосомах на поверхности эндоплазматического ретикулума, обычно поступают в его цистерны, а образовавшиеся на свободных рибосомах остаются в гиалоплазме.
Микротрубочки и микрофиламенты — нитевидные структуры, состоящие из сократительных белков и обусловливающие двигательные функции клетки.
Микротрубочки имеют вид длинных полых цилиндров, стенки которых состоят из белков — тубулинов. Микрофиламенты еще более тонкие, длинные, нитевидные структуры, состоящие из белков актина и миозина. Микротрубочки и микрофиламенты пронизывают всю цитоплазму клетки, формируя ее цитоскелет, обусловливают циклоз (ток цитоплазмы), внутриклеточные перемещения органоидов, образуют веретено деления и т.д.
Определенным образом организованные микротрубочки формируют центриоли клеточного центра, базальные тельца, реснички, жгутики.
Клеточный центр (центросома) обычно находится вблизи ядра, состоит из двух центриолей, располагающихся перпендикулярно друг к другу. Каждая центриоль имеет вид полого цилиндра, стенка которого образована девятью триплетами микротрубочек (9 + 0).
Центриоли играют важную роль в делении клетки, образуя веретено деления.
Реснички, жгутики — органоиды движения, представляющие собой своеобразные выросты цитоплазмы клетки, покрытые плазматической мембраной. В основании ресничек и жгутиков лежат базальные тельца, служащие им опорой.
Базальное тельце представляет собой цилиндр, образованный девятью триплетами микротрубочек (9 + 0). Базальные тельца способны восстанавливать реснички и жгутики после их потери. Остов реснички и жгутика также представляет собой цилиндр, по периметру которого располагаются девять парных микротрубочек, а в центре — две одиночные (9 + 2).
Разделение организмов на про- и эукариоты
По форме клетки необычайно разнообразны: одни имеют округлую форму, другие похожи на звездочки со многими лучами, третьи вытянутые и т.д. Различны клетки и по размеру – от мельчайших, с трудом различимых в световом микроскопе, до прекрасно видимых невооруженным глазом (например, икринки рыб и лягушек).
Любое неоплодотворенное яйцо, в том числе гигантские окаменевшие яйца ископаемых динозавров, которые хранятся в палеонтологических музеях, тоже были когда-то живыми клетками. Однако, если говорить о главных элементах внутреннего строения, все клетки схожи между собой.
Прокариоты (от лат. pro – перед, раньше, вместо и греч. karyon – ядро) – это организмы, клетки которых не имеют ограниченного мембраной ядра, т.е.
все бактерии, включая архебактерии и цианобактерии. Общее число видов прокариот около 6000. Вся генетическая информация прокариотической клетки (генофор) содержится в одной-единственной кольцевой молекуле ДНК. Митохондрии и хлоропласты отсутствуют, а функции дыхания или фотосинтеза, обеспечивающие клетку энергией, выполняет плазматическая мембрана (рис. 1). Размножаются прокариоты без выраженного полового процесса путем деления надвое. Прокариоты способны осуществлять целый ряд специфических физиологических процессов: фиксируют молекулярный азот, осуществляют молочнокислое брожение, разлагают древесину, окисляют серу и железо.
После вступительной беседы учащиеся рассматривают строение прокариотической клетки, сравнивая основные особенности строения с типами эукариотической клетки.
Эукариоты – это высшие организмы, имеющие четко оформленное ядро, которое оболочкой отделяется от цитоплазмы (кариомембраной).
К эукариотам относятся все высшие животные и растения, а также одноклеточные и многоклеточные водоросли, грибы и простейшие. Ядерная ДНК у эукариот заключена в хромосомах. Эукариоты обладают клеточными органоидами, ограниченными мембранами.
Отличия эукариот от прокариот
- Эукариоты имеют настоящее ядро: генетический аппарат эукариотической клетки защищен оболочкой, схожей с оболочкой самой клетки.
- Включенные в цитоплазму органоиды окружены мембраной.
Строение и функции органоидов растительных и животных клеток: таблица
Органоиды клетки | Строение органоидов | Функция | Присутствие органоидов в клетках | |
растений | животных | |||
Хлоропласт | Представляет собой разновидность пластид | Окрашивает растения в зеленый цвет, в нем происходит фотосинтез | + | – |
Лейкопласт | Оболочка состоит из двух элементарных мембран; внутренняя, врастая в строму, образует немногочисленные тилакоиды | Синтезирует и накапливает крахмал, масла, белки | + | – |
Хромопласт | Пластиды с желтой, оранжевой и красной окраской, окраска обусловлена пигментами – каротиноидами | Красная, желтая окраска осенних листьев, сочных плодов и |