Нуклеиновые кислоты. АТФ
Нуклеиновые кислоты (от лат. nucleus – ядро) – кислоты, впервые обнаруженные при исследовании ядер лейкоцитов; были открыты в 1868 г. И.Ф. Мишером, швейцарским биохимиком.
Биологическое значение нуклеиновых кислот — хранение и передача наследственной информации; они необходимы для поддержания жизни и для ее воспроизведения.
Дезоксирибонуклеиновая кислота (ДНК) Рибонуклеиновая кислота (РНК)
ДНК и РНК – полимеры, мономерами которых являются нуклеотиды.
Строение нуклеотида – мономера нуклеиновых кислот:
Состав | Строение |
Химические элементы: углерод, водород, кислород, азот, фосфор (C, H, O, N, P). | Это соединение, состоящее из азотистого основания, углевода (рибозы или дезоксирибозы) и остатка фосфорной кислоты. |
Нуклеотид ДНК и нуклеотид РНК имеют черты сходства и различия.
Строение нуклеотида ДНК
Органическое азотистое основание: либо аденин А, либо гуанин Г, либо цитозин Ц, либо тимин Т | Углевод дезоксирибоза | Остаток фосфорной кислоты |
Строение нуклеотида РНК
Органическое азотистое основание: либо аденин А, либо гуанин Г, либо цитозин Ц, либо урацил У | Углевод рибоза | Остаток фосфорной кислоты |
Молекула ДНК – двойная цепь, закрученная по спирали.
Молекула РНК представляет собой одиночную нить нуклеотидов, схожую по строению с отдельной нитью ДНК.
Только вместо дезоксирибозы РНК включает другой углевод – рибозу (отсюда и название), а вместо тимина – урацил.
Две нити ДНК соединены друг с другом водородными связями. При этом наблюдается важная закономерность: напротив азотистого основания аденин А в одной цепи располагается азотистое основание тимин Т в другой цепи, а против гуанина Г всегда расположен цитозин Ц.
Эти пары оснований называют комплементарными парами.
Таким образом, принцип комплементарности (от лат. complementum – дополнение) состоит в том, что каждому азотистому основанию, входящему в нуклеотид, соответствует другое азотистое основание.
Возникают строго определенные пары оснований (А – Т, Г – Ц), эти пары специфичны. Между гуанином и цитозином – три водородные связи, а между аденином и тимином возникают две водородные связи в нуклеотиде ДНК, а в РНК две водородные связи возникают между аденином и урацилом.
Водородные связи между азотистыми основаниями нуклеотидов
ДНК РНК
А = Т А = У
Г ≡ Ц Г ≡ Ц
В результате у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых — числу цитидиловых.
Благодаря этому свойству последовательность нуклеотидов в одной цепи определяет их последовательность в другой. Такая способность к избирательному соединению нуклеотидов называется комплементарностью, и это свойство лежит в основе образования новых молекул ДНК на базе исходной молекулы (репликации, т. е. удвоения).
Таким образом, количественное содержание азотистых оснований в ДНК подчинено некоторым правилам:
- 1) Сумма аденина и гуанина равна сумме цитозина и тимина А + Г = Ц + Т.
- 2) Сумма аденина и цитозина равна сумме гуанина и тимина А + Ц = Г + Т.
- 3) Количество аденина равно количеству тимина, количество гуанина равно количеству цитозина А = Т; Г = Ц.
При изменении условий ДНК, подобно белкам, может подвергаться денатурации, которая называется плавлением.
ДНК обладает уникальными свойствами: способностью к самоудвоению (репликация, редупликация) и способностью к самовосстановлению (репарация).
Репликация обеспечивает точное воспроизведение в дочерних молекулах той информации, которая была записана в материнской молекуле. Но в процессе репликации иногда возникают ошибки.
Строение и функции молекул ДНК и РНК
Способность молекулы ДНК исправлять ошибки, возникающие в ее цепях, то есть восстанавливать правильную последовательность нуклеотидов, называется репарацией.
Молекулы ДНК находятся в основном в ядрах клеток и в небольшом количестве в митохондриях и пластидах – хлоропластах.
Молекулы ДНК – носители наследственной информации.
Строение, функции и локализация в клетке: таблица
РНК | Месторасположение в клетке | Функции |
Рибосомная РНК (рРНК) – самые крупные РНК, состоящие из 3 — 5 тысяч нуклеотидов. | Рибосомы | Структурная (рРНК вместе с белковой молекулой образует рибосому) |
Транспортная РНК (тРНК) – самые маленькие РНК, состоящие из 80 – 100 нуклеотидов. | Цитоплазма | Перенос аминокислот в рибосомы – месту синтеза белка, узнавание кодона на иРНК |
Информационная, или матричная РНК (иРНК) – РНК, состоящие из 300 — 3000 нуклеотидов. | Ядро, цитоплазма | Перенос генетической информации от ДНК к месту синтеза белка -рибосомам, является матрицей для строящейся белковой молекулы (полипептида) |
Сравнительная характеристика нуклеиновых кислот: таблица
ДНК | РНК | |
Строение | ||
Углевод | Дезоксирибоза | Рибоза |
Азотистые основания | АТГЦ | АУГЦ |
Количество цепей в молекуле | Две | Одна |
Локализация в клетке | ||
Прокариоты | Цитоплазма | Цитоплазма, рибосомы |
Эукариоты | Ядро (хромосомы), органоиды (пластиды, митохондрии) | Ядро, органоиды (пластиды, митохондрии, рибосомы), цитоплазма |
Аденозинфосфорные кислоты — аденозинтрифосфорная кислота (АТФ), аденозиндифосфорная кислота (АДФ), аденозинмонофосфорная кислота (АМФ).
В цитоплазме каждой клетки, а также в митохондриях, хлоропластах и ядрах содержится аденозинтрифосфорная кислота (АТФ).
Она поставляет энергию для большинства реакций, происходящих в клетке. С помощью АТФ клетка синтезирует новые молекулы белков, углеводов, жиров, осуществляет активный транспорт веществ, биение жгутиков и ресничек.
АТФпо строению сходна с адениновым нуклеотидом, входящим в состав РНК, только вместо одной фосфорной кислоты в состав АТФ входят три остатка фосфорной кислоты.
Строение молекулы АТФ: таблица
Состав | Строение | Месторасположение в клетке |
Химические элементы: углерод, водород, кислород, азот, фосфор (C, H, O, N, P). | Это соединение, состоящее из нуклеотида – азотистого основания аденина, углевода рибозы, и трех остатков фосфорной кислоты. | Цитоплазма, митохондрии, пластиды, ядро |
Неустойчивые химические связи, которыми соединены молекулы фосфорной кислоты в АТФ, очень богаты энергией. При разрыве этих связей выделяется энергия, которая используется каждой клеткой для обеспечения процессов жизнедеятельности:
ДНК-микрочип иначе ДНК-чип (англ. DNA microarray или DNA chip, Gene chip, DNA chip) — миниатюрная пластина с нанесенными на нее в определенном порядке фрагментами ДНК известной последовательности для проведения генетического анализа.
ДНК-микрочип — устройство, созданное по аналогии с электронными микросхемами (чипами), предназначенное для одновременного выявления множества определенных последовательностей ДНК.
ДНК-микрочип используется для изучения экспрессии генов и поиска мутаций в биомедицинских исследованиях. Микрочип изготавливается из стекла, силикона или пластика. ДНК наносится на него методом машинной микропечати и химической пришивки в виде множества упорядоченных точек, каждая из которых содержит равное количество синтезированных ДНК-фрагментов, имеющих уникальную последовательность.
В других технологиях гибридизационного анализа генов комплементарные фрагменты ДНК пришивают к поверхности микроскопических шариков.
Современные ДНК-микрочипы могут одновременно измерить экспрессию десятков тысяч генов у человека и выявить около миллиона мутаций.
Принцип работы микрочипа для изучения экспрессии генов состоит в следующем.
Активная работа гена в данной ткани выражается в накоплении его матричной РНК (мРНК). Все мРНК экстрагируются из образца ткани, и с помощью фермента обратной транскриптазы на них синтезируется так называемая комплементарная ДНК (кДНК), которая значительно устойчивей и удобней в работе, чем мРНК.
Полученный набор кДНК метят с помощью флуоресцентных или радиоизотопных меток.
Содержание индивидуальных кДНК в образце прямо пропорционально содержанию их мРНК-матриц и, следовательно, уровню активности соответствующих генов. Смесь кДНК наносят на микрочип, в каждой точке которого пришиты ДНК-фрагменты, соответствующие кодирующей последовательности одного из генов.
кДНК находят «свои» точки и связываются (гибридизуются) с ними по принципу комплементарности. Чем больше в растворе кДНК данного вида, тем больше ее прикрепляется к своей точке.
Затем специальное сканирующее устройство определяет содержание кДНК в каждой точке микрочипа, а программа соотносит его с названием гена, представленного данной точкой. Результатом ДНК-микрочипового исследования является матрица из точек, интенсивность которых прямо пропорциональна активности соответствующих генов.