Строение клетки эукариот. Какая ДНК у эукариот?

Общие черты растительных и животных клеток

В строении и жизнедеятельности растительной и животной клеток много общего.

  • 1. Принципиальное единство строения.
  • 2. Сходство в протекании многих химических процессов в цитоплазме и ядре.
  • 3. Единство принципа передачи наследственной информации при делении клетки.
  • 4. Сходное строение мембран.
  • 5. Единство химического состава.

Отличие растительных и животных клеток

Растительная клетка отличается от животной клетки следующими особенностями строения:

1) Растительная клетка имеет клеточную стенку (оболочку).

Клеточная стенка находится за пределами плазмалеммы (цитоплазматической мембраны) и образуется за счет деятельности органоидов клетки: эндоплазматической сети и аппарата Гольджи.

Основу клеточной стенки составляет целлюлоза (клетчатка). Клетки, окруженные твердой оболочкой, могут воспринимать из окружающей среды необходимые им вещества только в растворенном состоянии.

Поэтому растения питаются осмотически. Интенсивность же питания зависит от величины поверхности тела растения, соприкасающейся с окружающей средой. Поэтому у растений тело больше расчленено, чем у животных.

Существование у растений твердых клеточных оболочек обусловливает еще одну особенность растительных организмов — их неподвижность, в то время как у животных мало форм, ведущих прикрепленный образ жизни.

2) У растений в клетке имеются особые органоиды — пластиды.

Наличие пластид связано с особенностями обмена веществ растений, их автотрофным типом питания.

Различают три вида пластид: лейкопласты — бесцветные пластиды, в которых из моносахаридов и дисахаридов синтезируется крахмал (есть лейкопласты, запасающие белки или жиры);

хлоропласты — зеленые пластиды, содержащие пигмент хлорофилл, где осуществляется фотосинтез;

хромопласты, накапливающие пигменты из группы каротиноидов, которые придают им окраску от желтой до красной.

3) В растительной клетке имеются вакуоли, ограниченные мембраной — тонопластом. У растений слабо развита система выделения отбросов, поэтому вещества, ненужные клетке, накапливаются в вакуолях.

Кроме того, ряд накапливаемых веществ определяют осмотические свойства клетки.

4) В растительной клетке отсутствуют центриоли (клеточный центр).

Черты сходства указывают на близость их происхождения.

Признаки различия говорят о том, что клетки вместе с их владельцами прошли длительный путь исторического развития.

Прокариоты и эукариоты: примеры

Все организмы, имеющие клеточное строение, делятся на две группы: предъядерные (прокариоты) и ядерные (эукариоты).

Клетки прокариот, к которым относятся бактерии, в отличие от эукариот, имеют относительно простое строение.

В прокариотической клетке нет организованного ядра, в ней содержится только одна хромосома, которая не отделена от остальной части клетки мембраной, а лежит непосредственно в цитоплазме. Однако в ней также записана вся наследственная информация бактериальной клетки.

Цитоплазма прокариот по сравнению с цитоплазмой эукариотических клеток значительно беднее по составу структур. Там находятся многочисленные более мелкие, чем в клетках эукариот, рибосомы.

Функциональную роль митохондрий и хло-ропластов в клетках прокариот выполняют специальные, довольно просто организованные мембранные складки.

Клетки прокариот, так же как и эукариотические клетки, покрыты плазматической мембраной, поверх которой располагается клеточная оболочка или слизистая капсула.

Несмотря на относительную простоту, прокариоты являются типичными независимыми клетками.

Строение клетки эукариот

Строение эукариотической клетки сложнее, чем у прокариотической. В первую очередь это касается наличия ядра и мембранных органелл у эукариот.

Однако это не единственные отличия. Согласно наиболее принятой гипотезе эукариотическая клетка произошла в результате симбиогенеза нескольких прокариот.

Структурные компоненты клетки взаимосвязаны между собой различными биохимическими процессами, направленными на поддержание гомеостаза, деление, приспособление к окружающей среде, в том числе внутренней (для многоклеточных организмов).

В строении эукариотических клеток можно выделить такие основополагающие части:

  • ядро,
  • цитоплазма, содержащая органоиды и включения,
  • цитоплазматическая мембрана и клеточная стенка.

Ядро выполняет роль управляющего центра, регулирует все клеточные процессы.

Здесь содержится генетический материал — хромосомы. Также важна роль ядра в клеточном делении.

Цитоплазма состоит из полужидкого содержимого — гиалоплазмы, в которой находятся органеллы, включения, различные молекулы.

Клеточная мембрана есть у всех клеток, представляет собой липидный бислой с содержащимися в нем и на его поверхностях белками. Клеточная стенка есть только у растительных и грибных клеток. Причем у растений основным ее компонентом является целлюлоза, а у грибов — хитин.

Органеллы, или органоиды, эукариотических клеток принято делить на мембранные и немембранные.

Содержимое мембранных органоидов окружено мембраной, подобной той, которая окружает всю клетку. При этом одни органоиды окружены двумя мембранами — внешней и внутренней, а другие — только одной.

Ключевыми мембранными органеллами эукариотических клеток являются:

  • митохондрии,
  • хлоропласты,
  • эндоплазматическая сеть,
  • комплекс Гольджи,
  • лизосомы.

К немембранным органоидам относятся:

  • рибосомы,
  • клеточный центр.

Особенности строения органоидов эукариотической клетки связаны с выполняемыми ими функциями.

Так митохондрии выполняют роль энергетических центров клетки, в них синтезируется большая часть молекул АТФ. В связи с этим внутренняя мембрана митохондрий имеет множество выростов — крист, содержащих ферментативные конвейеры, функционирование которых приводит к синтезу АТФ.

Хлоропласты есть только у растений. Это тоже двумембранный органоид, содержащий внутри себя структуры — тилакоиды. На мембранах тилакоидов происходят реакции световой фазы фотосинтеза.

В процессе фотосинтеза за счет энергии Солнца происходит синтез органических веществ. Эта энергия накапливается в химических связях сложных соединений.

В процессе дыхания, которое большей частью происходит в митохондриях, происходит расщепление органических веществ с высвобождением энергии, которая сначала аккумулируется в АТФ, а далее используется для обеспечения любой активности клетки.

По каналам эндоплазматической сети (ЭПС) идет транспорт веществ из одной части клетки в другую, здесь же синтезируется большая часть белков, жиров и углеводов. Причем белки синтезируются рибосомами, расположенными на поверхности мембраны ЭПС.

В комплексе Гольджи образуются лизосомы, содержащие различные ферменты в основном для расщепления поступивших в клетку веществ.

Им формируются везикулы, содержимое которых экскретируется за пределы клетки. Также Гольджи принимает участие в построении цитоплазматической мембраны и клеточной стенки.

Рибосомы состоят из двух субъединиц, выполняют функцию синтеза полипептидов.

Клеточный центр у большинства эукариот состоит из пары центриолей.

Каждая центриоль похожа на цилиндр. Его составляют расположенные по окружности микротрубочки в количестве 27 штук, объединенные по 3, т. е. получается 9 триплетов. Основная функция клеточного центра — организация веретена деления, состоящего из «вырастающих» из него микротрубочек. Веретено деления обеспечивает равномерное распределение генетического материала при делении эукариотической клетки.

Выше перечислены наиболее важные и обязательные компоненты эукариотической клетки.

Однако строение клеток разных эукариот, а также разных клеток одного организма несколько отличается. У дифференцированных клеток может исчезать ядро. Такие клетки уже не делятся, а только выполняют свою функцию. У растений клеточный центр не имеет центриолей. Клетки одноклеточных эукариот могут содержать специальные органоиды, такие как сократительные, выделительные, пищеварительные вакуоли.

Крупная центральная вакуоль есть во многих зрелых растительных клетках.

Также все клетки содержат цитоскелет из микротрубочек и микрофилламентов, пероксисомы.

Необязательными компонентами клетки являются включения. Это не органоиды, а различные продукты обмена веществ, имеющие разное предназначение. Например, жировые, углеводные и белковые включения используются как питательные вещества. Есть включения, подлежащие выделению из клетки, — экскреты.

Таким образом, строение эукариотической клетки показывает, что это сложная система, функционирование которой направлено на поддержание жизни.

Такая система возникла в процессе длительной сначала химической, биохимической и потом биологической эволюции на Земле.

Строение клетки

Клетка — самая мелкая единица живого, лежащая в основе строения и развития растительных и животных организмов нашей планеты.

Она представляет собой элементарную живую систему, способную к самообновлению, саморегуляции, самовоспроизведению.

Хотя отдельная клетка представляет собой наиболее простую форму жизни, строение ее достаточно сложно. Достижения цитологии позволили проникнуть в глубинные механизмы строения и функции клетки. Мощным средством ее изучения служит электронный микроскоп, дающий увеличение до 1000000 раз и позволяющий рассматривать объекты в 200 нм.

Напомним, что с помощью светового микроскопа можно изучать структуры размером лишь около 0,4 мкм. Если сравнить разрешающие способности микроскопов и человеческого глаза, то световой в 500 раз сильнее глаза, а электронный в 500 раз сильнее светового микроскопа.

Помимо электронного микроскопа, в цитологии используется ряд биохимических и биофизических методов исследования, помогающих изучению состава и жизнедеятельности клетки.

Живая клетка отграничена от окружающей среды наружной плазматической мембраной, состоящей из трех (белково-липидных) слоев. В самой клетке находятся ядро и цитоплазма. Ядро от цитоплазмы отграничено также трехслойной плазматической мембраной (рис. 1).

Цитоплазма

Цитоплазма представляет собой полужидкую слизистую бесцветную массу, содержащую 75—85% воды, 10—12% белков и аминокислот, 4—6% углеводов, 2-3% жиров и липидов, 1% неорганических и других веществ.

Цитоплазматическое содержимое клетки способно двигаться, что способствует оптимальному размещению органоидов, лучшему протеканию биохимических реакций, выделению продуктов обмена и т. д. Слой цитоплазмы формирует разные образования: реснички, жгутики, поверхностные выросты.

Последние играют важную роль в движении и соединении клеток между собой в ткани.

Цитоплазма пронизана сложной сетчатой системой, связанной с наружной плазматической мембраной и состоящей из сообщающихся между собой канальцев, пузырьков, уплощенных мешочков. Такая сетчатая структура названа вакуолярной системой. Основными компонентами вакуолярной системы служат эндоплазматическая сеть, комплекс Гольджи, ядерная мембрана.

Эндоплазматическая сеть (ЭПС)

Название этого органоида отражает место расположения его в центральной части цитоплазмы (греч. эндон—внутри). ЭПС представляет собой очень разветвленную взаимосвязанную систему канальцев, трубочек, пузырьков, цистерн разной величины и формы, отграниченных мембранами от цитоплазмы клетки.

Она бывает двух видов:

гранулярная, состоящая из канальцев и цистерн, поверхность которых усеяна зернышками (гранулами), и агранулярная, т. е. гладкая (без гран). Граны в эндоплазматической сети не что иное, как рибосомы.

Интересно, что в клетках зародышей животных наблюдается в основном гранулярная ЭПС, а у взрослых форм — агранулярная. Зная, что рибосомы в цитоплазме служат местом синтеза белка, можно предположить, что гранулярная сеть преобладает в клетках, активно синтезирующих белок. Считают, что агранулярная сеть в большей степени представлена в тех клетках, где идет активный синтез липидов (жиров и жироподобных веществ).

Оба вида эндоплазматической сети не только участвуют в синтезе органических веществ, но и накапливают и транспортируют их к местам назначения, регулируют обмен веществ между клеткой и окружающей ее средой.

Рибосомы

Рибосомы — немембранные клеточные органоиды, состоящие из рибонуклеиновой кислоты и белка.

Их внутреннее строение во многом еще остается загадкой. В электронном микроскопе они имеют вид округлых или грибовидных гранул. Каждая рибосома разделена желобком на большую и меньшую части (субъединицы). Часто несколько рибосом объединяются нитью специальной рибонуклеиновой кислоты (РНК), называемой информационной (и-РНК). Рибосомы осуществляют уникальную функцию синтеза белковых молекул из аминокислот.

Комплекс Гольджи

Продукты биосинтеза поступают в просветы полостей и канальцев ЭПС, где они концентрируются и транспортируются в специальный аппарат — комплекс Гольджи, расположенный вблизи ядра.

Комплекс Гольджи участвует в транспорте продуктов биосинтеза к поверхности клетки и в выведении их из клетки, в формировании лизосом и т. д.

Лизосомы

Лизосомы (от греч. лизео — растворяю и сома — тело). Это органоиды клетки овальной формы, окруженные одно-слойной мембраной. В них находится набор ферментов, которые разрушают белки, углеводы, липиды. В случае повреждения лизосомной мембраны ферменты начинают расщеплять и разрушать внутреннее содержимое клетки, и она погибает.

Клеточный центр

Клеточный центр можно наблюдать в клетках, способных делиться. Он состоит из двух палочковидных телец — центриолей. Находясь около ядра и аппарата Гольджи, клеточный центр участвует в процессе деления клетки, в образовании веретена деления.

Энергетические органоиды

Митохондрии (греч- митос — нить, хондрион — гранула) называют энергетическими станциями клеток.

Такое название обусловливается тем, что именно в ми-тохондриях происходит извлечение энергии, заключенной в питательных веществах. Форма митохондрий изменчива, но чаще всего они имеют вид нитей или гранул. Размеры и число их также непостоянны и зависят от функциональной активности клетки.

На электронных микрофотографиях видно, что митохондрий состоят из двух мембран: наружной и внутренней.

Внутренняя мембрана образует выросты, называемые кристами, которые сплошь устланы ферментами. Наличие крист увеличивает общую поверхность митохондрий, что важно для активной деятельности ферментов. На кристах происходят ферментативные реакции, в результате которых из фосфата и АДФ (аденозиндифосфата) синтезируется богатое энергией (макроэргическое) вещество АТФ (аденозинтрифосфат). Последнее служит основным источником энергии для всех внутриклеточных процессов.

В митохондриях обнаружены свои специфические ДНК и рибосомы.

В связи с этим они самостоятельно размножаются при делении клетки.

Хлоропласты — по форме напоминают диск или шар с двойной оболочкой — наружной и внутренней. Внутри хлоропласта также имеются ДНК, рибосомы и особые мембранные структуры— граны, связанные между собой и внутренней мембраной хлоропласта. В мембранах гран и находится хлорофилл. Благодаря хлорофиллу в хлоропластах происходит превращение энергии солнечного света в химическую энергию АТФ.

Энергия АТФ используется в хлоропластах для синтеза углеводов из углекислого газа и воды.

Ядро

Ядро — самый заметный и самый большой органоид клетки, который первым привлек внимание исследователей. Ядро отделено от цитоплазмы двойной мембраной, которая непосредственно связана с ЭПС и комплексом Гольджи. На ядерной мембране обнаружены поры, через которые (как и через наружную цитоплазматическую мембрану) одни вещества проходят легче, чем другие, т.

е. поры обеспечивают избирательную проницаемость мембраны.

Внутреннее содержимое ядра составляет ядерный сок, заполняющий пространство между структурами ядра. В ядре всегда присутствует одно или несколько ядрышек. В ядрышке образуются рибосомы.

Поэтому между активностью клетки и размером ядрышек существует прямая связь: чем активнее протекают процессы биосинтеза белка, тем крупнее ядрышки и наоборот, в клетках, где синтез белка ограничен, ядрышки или очень невелики, или совсем отсутствуют.

В ядре находятся также молекулы ДНК, соединенные со специфическими белками — гистонами. В процессе деления клетки — митоза — эти нуклеопротеиды спирализуются и представляют собой плотные образования—хромосомы, хорошо различимые в световом микроскопе.

ДНК хромосом содержит наследственную информацию о всех признаках и свойствах данной клетки, о процессах, которые должны протекать в ней (например, синтез белка). Кроме того, в ядре осуществляется синтез и-РНК, которая после транспортировки в цитоплазму играет существенную роль в передаче информации для синтеза белковых молекул.

cyber
Оцените автора
CyberLesson | Быстро освоить программирование Pascal и C++. Решение задач Pascal и C++
Добавить комментарий