Синапсы: строение, структура и функции

Синапсы: строение, структура и функции

ПРОЛОГ:

Наше тело — один большой часовой механизм.

Он состоит из огромнейшего количества мельчайших частиц, которые расположены в строгом порядке и каждая из них выполняет определённые функции, и имеет свои неповторимые свойства.

Этот механизм — тело, состоит из клеток, соединяющих их тканей и систем: все это в целом представляет собой единую цепочку, сверхсистему организма.

Величайшее множество клеточных элементов не могли бы работать как единое целое, если бы в организме не существовал утонченный механизм регуляции. Особую роль в регуляции играет нервная система.

Вся сложная работа нервной системы — регулирование работы внутренних органов, управление движениями, будь то простые и неосознаваемые движения (например, дыхание) или сложные, движения рук человека — все это, в сущности, основано на взаимодействии клеток между собой.

Все это, в сущности, основано на передаче сигнала от одной клетке к другой. Причем, каждая клетка выполняет свою работу, а иногда имеет несколько функций. Разнообразие функций обеспечивается двумя факторами: тем, как клетки соединены между собой, и тем, как устроены эти соединения.

ФИЗИОЛОГИЯ НЕЙРОНА И ЕГО СТРОЕНИЕ:

Простейшая реакция нервной системы на внешний раздражитель — это рефлекс.

Прежде всего, рассмотрим строение и физиологию структурной элементарной единицы нервной ткани животных и человека — нейрона. Функциональные и основные свойства нейрона определяются его способностью к возбуждению и самовозбуждению.

Передача возбуждения осуществляется по отросткам нейрона — аксонам и дендритам.

Аксоны — более длинные и широкие отростки. Они обладают рядом специфических свойств: изолированным проведением возбуждения и двусторонней проводимостью.

Нервные клетки способны не только воспринимать и перерабатывать внешнее возбуждение, но и самопроизвольно выдавать импульсы, не вызванные внешним раздражением (самовозбуждение).

В ответ на раздражение, нейрон отвечает импульсом активности — потенциалом действия, частота генерации которых колеблется от 50-60 импульсов в секунду (для мотонейронов), до 600-800 импульсов в секунду (для вставочных нейронов головного мозга). Аксон заканчивается множеством тоненьких веточек, которые называются терминалями.

С терминалей импульс переходит на другие клетки, непосредственно на их тела или чаще на их отростки дендриты. Количество терминалей у аксона, может достигать до одной тысячи, которые оканчиваются в разных клетках. С другой стороны, типичный нейрон позвоночного имеет от 1000 до 10000 терминалей от других клеток.

Дендриты — более короткие и многочисленные отростки нейронов. Они воспринимают возбуждение от соседних нейронов и проводят его к телу клетки.

Различают мякотные и безмякотные нервные клетки и волокна.

Мякотные волокна — входят в состав чувствительных и двигательных нервов скелетной мускулатуры и органов чувств Они покрыты липидной миелиновой оболочкой.

Мякотные волокна более «быстродействующие»: в таких волокнах диаметром 1-3,5 микромиллиметра, возбуждение распространяется со скоростью 3-18 м/с. Это объясняется тем, что проведение импульсов по миелинизированному нерву происходит скачкообразно.

При этом потенциал действия «перескакивает» через участок нерва, покрытый миелином и в месте перехвата Ранвье (оголенный участок нерва), переходит на оболочку осевого цилиндра нервного волокна. Миелиновая оболочка является хорошим изолятором и исключает передачу возбуждения на соединение, параллельно идущие нервные волокна.

Безмякотные волокна — составляют основную часть симпатических нервов.

Они не имеют миелиновой оболочки и отделены друг от друга клетками нейроглии.

В безмякотных волокнах роль изоляторов выполняют клетки нейроглии (нервной опорной ткани). Швановские клетки — одна из разновидностей глиальных клеток. Помимо внутренних нейронов, воспринимающих и преобразующих импульсы, поступающие от других нейронов, существуют нейроны, воспринимающие воздействия непосредственно из окружающей среды — это рецепторы, а так же нейроны, непосредственно воздействующие на исполнительные органы — эффекторы, например, на мышцы или железы.

Если нейрон воздействует на мышцу, его называют моторным нейроном или мотонейроном. Среди нейрорецепторов различают 5 типов клеток, в зависимости от вида возбудителя:

фоторецепторы, которые возбуждаются под воздействием света и обеспечивают работу органов зрения,

механорецепторы, те рецепторы, которые реагируют на механические воздействия.

Они располагаются в органах слуха, равновесия. Осязательные клетки также являются механорецепторами. Некоторые механорецепторы располагаются в мышцах и измеряют степень их растяжения.

хеморецепторы — избирательно реагируют на присутствие или изменение концентрации различных химических веществ, на них основана работа органов обоняния и вкуса,

терморецепторы, реагируют на изменение температуры либо на ее уровень — холодовые и тепловые рецепторы,

электрорецепторы реагируют на токовые импульсы, и имеются у некоторых рыб, амфибий и млекопитающих, например, у утконоса.

Исходя из выше сказанного, хотелось бы отметить, что долгое время среди биологов, изучавших нервную систему, существовало мнение, что нервные клетки образуют длинные сложные сети, непрерывно переходящие одна в другую.

Однако в 1875 году, итальянский ученый, профессор гистологии университета в Павии, придумал новый способ окраски клеток — серебрение. При серебрении одной из тысяч лежащих рядом клеток окрашивается только она — единственная, но зато полностью, со всеми своими отростками.

Метод Гольджи сильно помог изучению строения нервных клеток. Его использование показало, что, не смотря на то, что клетки в головном мозгу расположены чрезвычайно близко друг к другу, и их отростки перепутаны, все же каждая клетка четко отделяется. То есть мозг, как и другие ткани, состоит из отдельных, не объединенных в общую сеть клеток. Этот вывод был сделан испанским гистологом С.

Рамон-и-Кахалем, который тем самым распространил клеточную теорию на нервную систему. Отказ от представления об объединенной сети, означал, что в нервной системе импульс переходит с клетки на клетку не через прямой электрический контакт, а через разрыв.

Когда в биологии стал использоваться электронный микроскоп, который был изобретен в 1931 году М. Кноллем и Э. Руска, эти представления о наличии разрыва получили прямое подтверждение.

СТРУКТУРА И ФУНКЦИИ СИНАПСА:

Каждый многоклеточный организм, каждая ткань, состоящая из клеток, нуждается в механизмах, обеспечивающих межклеточные взаимодействия.

Рассмотрим, как осуществляются межнейронные взаимодействия. По нервной клетке информация распространяется в виде потенциалов действия.

Передача возбуждения с аксонных терминалей на иннервируемый орган или другую нервную клетку происходит через межклеточные структурные образования — синапы (от греч. «Synapsis» — соединение, связь).

Понятие синапс было введено английским физиологом Ч. Шеррингтоном в 1897 году, для обозначения функционального контакта между нейронами.

Следует отметить, что еще в 60-х годах прошлого столетия И.М. Сеченов подчеркивал, что вне межклеточной связи нельзя объяснить способы происхождения даже самого нервного элементарного процесса.

Чем сложнее устроена нервная система, и чем больше число составляющих нервных мозговых элементов, тем важнее становится значение синаптических контактов.

Различные синаптические контакты отличаются друг от друга.

Однако при всем многообразии синапсов существуют определенные общие свойства их структуры и функции. Поэтому сначала опишем общие принципы их функционирования.

Синапс — представляет собой сложное структурное образование, состоящее из пресинаптической мембраны (чаще всего это концевое разветвление аксона), постсинаптической мембраны (чаще всего это участок мембраны тела или дендрита другого нейрона), а так же синаптической щели.

Механизм передачи через синапс долгое время оставался невыясненным, хотя было очевидно, что передача сигналов в синаптической области резко отличается от процесса проведения потенциала действия по аксону.

Однако в начале XX века была сформулирована гипотеза, что синаптическая передача осуществляется или электрическим или химическим путем. Электрическая теория синаптической передачи в ЦНС пользовалась признанием до начала 50-х годов, однако она значительно сдала свои позиции после того, как химический синапс был продемонстрирован в ряде периферических синапсов.

Так, например, А.В. Кибяков, проведя опыт на нервном ганглии, а также использование микроэлектродной техники для внутриклеточной регистрации синаптических потенциалов нейронов ЦНС позволили сделать вывод о химической природе передачи в межнейрональных синапсах спинного мозга.

Микроэлектродные исследования последних лет показали, что в определенных межнейронных синапсах существует электрический механизм передачи.

В настоящее время стало очевидным, что есть синапсы, как с химическим механизмом передачи, так и с электрическим. Более того, в некоторых синаптических структурах вместе функционируют и электрический и химический механизмы передачи — это так называемые смешанные синапсы.

Что такое синапс?

Синапс (греч. synapsis — объединение) обеспечивает однонаправленную передачу нервных импульсов. Синапсы являются участками функционального контакта между нейронами или между нейронами и другими эффекторными клетками (например, мышечными и железистыми).

Функция синапса состоит в превращении электрического сигнала (импульса), передаваемого пресинаптической клеткой, в химический сигнал, который воздействует на другую клетку, известную как постсинаптическая клетка.

Большинство синапсов передают информацию, выделяя нейромедиаторы в ходе процесса распространения сигнала.

Нейромедиаторы — это химические соединения, которые, связываясь с рецепторным белком, открывают или закрывают ионные каналы либо запускают каскады второго посредника. Нейромодуляторы представляют собой химические посредники, которые напрямую не действуют на синапсы, но изменяют (модифицируют) чувствительность нейрона к синаптической стимуляции или к синаптическому торможению.

Некоторые нейромодуляторы являются нейропептидами или стероидами и вырабатываются в нервной ткани, другие— циркулирующими в крови стероидами. В состав самого синапса входят терминаль аксона (пресинаптическая терминаль), приносящая сигнал, участок на поверхности другой клетки, в котором генерируется новый сигнал (постсинаптическая терминаль), и узкое межклеточное пространство — сина птическая щель.

Если аксон оканчивается на клеточном теле, это — аксосоматический синапс, если он оканчивается на дендрите, то такой синапс известен как аксодендритический, и если он образует синапс на аксоне — это аксоаксональный синапс.

Большая часть синапсов — химические синапсы, поскольку в них используются химические посредники, однако отдельные синапсы передают ионные сигналы через щелевые соединения, которые пронизывают пре- и постсинаптическую мембраны, тем самым обеспечивая прямое проведение нейронных сигналов.

Такие контакты известны как электрические синапсы.

Пресинаптическая терминаль всегда содержит синаптические пузырьки с нейромедиаторами и многочисленные митохондрии.

Нейромедиаторы обычно синтезируются в клеточном теле; далее они запасаются в пузырьках в пресинаптической части синапса. В ходе передачи нервного импульса они выделяются в синаптическую щель посредством процесса, известного как экзоцитоз.

Механизм передачи информации в синапсах

Эндоцитоз способствует возвращению избыточной мембраны, которая накапливается в пресинаптической части в результате экзоцитоза синаптических пузырьков.

Возвращенная мембрана сливается с агранулярной эндоплазматической сетью (аЭПС) пресинаптического компартмента и повторно используется для образования новых синаптических пузырьков.

Некоторые нейромедиаторы синтезируются в пресинаптическом компартменте при использовании ферментов и предшественников, которые доставляются механизмом аксонального транспорта.

Первыми описанными нейромедиаторами были ацетилхолин и норадреналин. Аксонная терминаль, выделяющая норадреналин, показана на рисунке.

Большая часть нейромедиаторов являются аминами, аминокислотами или мелкими пептидами (нейропептиды). Действием нейромедиаторов могут обладать и некоторые неорганические вещества, такие, как оксид азота. Отдельные пептиды, играющие роль нейромедиаторов, используются в других участках организма, например в качестве гормонов в пищеварительном тракте.

Нейропептиды очень важны в регуляции ощущений и побуждений, таких, как боль, удовольствие, голод, жажда и половое влечение.

Последовательность явлений при передаче сигнала в химическом синапсе

Явления, происходящие во время передачи сигнала в химическом синапсе, проиллюстрированы на рисунке.

Нервные импульсы, быстро (в течение миллисекунд) пробегающие по клеточной мембране, вызывают взрывообразную электрическую активность (деполяризацию), которая распространяется по мембране клетки.

Такие импульсы на короткое время открывают кальциевые каналы в пресинаптической области, обеспечивая приток кальция, который запускает экзоцитоз синаптических пузырьков.

В участках экзопитоза выделяются нейромедиаторы, которые реагируют с рецепторами, расположенными на постсинаптическом участке, вызывая транзиторную электрическую активность (деполяризацию) постсинаптической мембраны.

Такие синапсы известны как возбуждающие, поскольку их активность способствует возникновению импульсов в постсинаптической клеточной мембране. В некоторых синапсах взаимодействие нейромедиатор — рецептор дает противоположный эффект — возникает гиперполяризация, причем передача нервного импульса отсутствует. Эти синапсы известны как тормозные. Таким образом, синапсы могут либо усиливать, либо угнетать передачу импульсов, тем самым они способны регулировать нервную активность.

После использования нейромедиаторы быстро удаляются вследствие ферментного разрушения, диффузии или эндоцитоза, опосредованного специфическими рецепторами на пресинаптической мембране. Такое удаление нейромедиаторов имеет важное функциональное значение, поскольку оно предотвращает нежелательную продолжительную стимуляцию постсинаптического нейрона.

Строение синапса

Рассмотрим строение синапса на примере аксо- соматического. Синапс состоит из трех частей: преси- наптического окончания, синаптической щели и пост- синаптической мембраны (рис.9).

Пресинаптическое окончание (синаптическая бляшка) представляет собой расширенную часть тер- минали аксона. Синаптическая щель — это пространство между двумя контактирующими нейронами. Диаметр синаптической щели составляет 10 — 20 нм.

Мембрана пресинаптического окончания, обращенная к синаптической щели, называется пресинаптической мембраной. Третья часть синапса — постсинаптичес- кая мембрана, которая расположена напротив пресинаптической мембраны.

Пресинаптическое окончание заполнено пузырьками (везикулами) и митохондриями. В везикулах находятся биологически активные вещества — медиаторы. Медиаторы синтезируются в соме и по микротрубочкам транспортируются в пресинаптическое окончание.

Наиболее часто в качестве медиатора выступают адреналин, норадреналин, ацетилхолин, серотонин, гамма-аминомасляная кислота (ГАМК), глицин и другие. Обычно синапс содержит один из медиаторов в большем количестве по сравнению с другими медиаторами. По типу медиатора принято обозначать синапсы: адреноэргические, холинэргические, серото- нинэргические и др.

В состав постсинаптической мембраны входят особые белковые молекулы — рецепторы, которые могут присоединять молекулы медиаторов.

Синаптическая щель заполнена межклеточной жидкостью, в которой находятся ферменты, способствующие разрушению медиаторов.

На одном постсинаптическом нейроне может находиться до 20000 синапсов, часть которых являются возбудительными, а часть — тормозными.

Помимо химических синапсов, в которых при взаимодействии нейронов участвуют медиаторы, в нервной системе встречаются электрические синапсы.

В электрических синапсах взаимодействие двух нейронов осуществляется посредством биотоков.

Химический синапс

В некоторых межнейронных синапсах электрическая и химическая передача осуществляется одновременно — это смешанный тип синапсов.

Влияние возбудительных и тормозных синапсов на возбудимость постсинаптического нейрона суммируется, и эффект зависит от места расположения синапса. Чем ближе синапсы расположены к аксональному холмику, тем они эффективнее.

Напротив, чем дальше расположены синапсы от аксонального холмика (например, на окончании дендритов), тем они менее эффективны. Таким образом, синапсы, расположенные на соме и аксональном холмике, оказывают влияние на возбудимость нейрона быстро и эффективно, а влияние удаленных синапсов медленно и плавно.

Благодаря синаптическим связям нейроны объединены в функциональные единицы — нейронные сети. Нейронные сети могут быть образованы нейронами, расположенными на небольшом расстоянии.

Такую нейронную сеть называют локальной. Кроме того, в сеть могут быть объединены нейроны, удаленные друг от друга, из разных областей мозга. Самый высокий уровень организации связей нейронов отражает соединение нескольких областей центральной нервной системы.

Такую нервную сеть называют путем, или системой. Различают нисходящие и восходящие пути. По восходящим путям информация передается от нижележащих областей мозга к вышележащим (например, от спинного мозга к коре полушарий большого мозга). Нисходящие пути связывают кору больших полушарий мозга со спинным мозгом.

Самые сложные сети называются распределительными системами. Они образуются нейронами разных отделов мозга, управляющих поведением, в которых участвует организм как единое целое.

Некоторые нервные сети обеспечивают конвергенцию (схождение) импульсов на ограниченном количестве нейронов. Нервные сети могут быть построены также по типу дивергенции (расхождение). Такие сети обусловливают передачу информации на значительные расстояния.

Кроме того, нервные сети обеспечивают интеграцию (суммирование или обобщение) различного рода информации.

cyber
Оцените автора
CyberLesson | Быстро освоить программирование Pascal и C++. Решение задач Pascal и C++
Добавить комментарий