Альдегиды и кетоны: свойства, получение и применение

Альдегиды и кетоны

Альдегидами и кетонами называются производные углеводородов, содержащие карбонильную группу, или оксогруппу.

В альдегидах, как правило, карбонильная группа связана одной из своих свободных валентностей с атомом водорода, другой – с каким-либо углеводородным радикалом. Все альдегиды содержат группу СОН, называемую альдегидной.

В кетонах карбонильная группа двумя своими валентностями соединена с какими-либо углеводородными радикалами.

Альдегиды и кетоны бывают насыщенными, ненасыщенными и ароматическими. Предельные альдегиды и кетоны с одинаковым числом углеродных атомов изомерны друг другу и имеют одну и ту же суммарную формулу.

Альдегиды называют или по кислотам, в которые они переходят при окислении (тривиальная номенклатура), или по названию предельных углеводородов с добавлением окончания -аль (систематическая номенклатура IUРАС).

Кетоны по рациональной номенклатуре называют по названию радикалов, входящих в их молекулу, с добавлением окончания -кетон.

По систематической номенклатуре IUРАС кетоны называют по названию соответствующего углеводорода с добавлением окончания -он и с указанием местонахождения карбонильной группы.

Наличие карбонильной группы обусловливает высокую реакционную активность альдегидов и кетонов и определяет их способность к многочисленным и разнообразным реакциям.

Альдегиды легко окисляются до карбоновых кислот с тем же углеродным скелетом.

  • 1. Они могут окисляться даже кислородом воздуха и такими слабыми окислителями, как аммиачный раствор гидроокиси серебра:
  • 2. Реакцию альдегидов с аммиачным раствором гидроокиси серебра называют «реакцией серебряного зеркала» – окисление аммиачным раствором оксида серебра (реактив Толленса). Ее используют для обнаружения альдегидов:

R–CH=O + 2[Ag(NH3)2]OH → RCOOH + 2Ag↓ + 4NH3 + H2O.

Кетоны не окисляются ни кислородом воздуха, ни слабыми окислителями, не восстанавливают аммиачный раствор гидроокиси серебра. Они окисляются лишь под действием более сильных окислителей, например, перманганата калия, причем окисление происходит иначе, чем окисление альдегидов.

При окислении молекула кетона расщепляется с образованием молекул кислот или кислоты и кетона с меньшим числом углеродных атомов, чем первоначальный. Разрыв цепи углеродных атомов происходит рядом с карбонильным атомом углерода:

Если в молекуле кетона содержится два различных радикала, то распад молекулы при окислении может идти по двум возможным направлениям, например:

Таким образом, произведя окисление кетона и узнав, какие кислоты получились в результате окисления, можно определить строение кетона.

3. Реакция окисления гидроксидом меди(II):

  • а) в виде свежеприготовленного осадка Cu(OH)2 при нагревании;
  • б) в форме комплекса с аммиаком [Cu(NH3)4](OH)2;
  • в) в составе комплекса с солью винной кислоты (реактив Фелинга).

При этом образуется красно-кирпичный осадок оксида меди(I) или металлическая медь (реакция «медного зеркала», более характерная для формальдегида):

  • R–CH=О + 2Cu(OH)2 → RCOOH + Cu2O↓ + H2О;
  • H2C=О + Cu(OH)2 → HCOOH + Cu↓ + H2О;
  • R–CH=O + 2[Cu(NH3)4](OH)2 → RCOOH + Cu2O↓ + 4NH3 + 2H2O;
  • R–CH=O + 2Cu(OH)2/соль винной кислоты → RCOOH + Cu2O↓ + 2H2O.

При нагревании наблюдают появление осадка оксида меди(I) желтого цвета, переходящего в красный:

Муравьиный альдегид, в отличие от других альдегидов, восстанавливает оксиды меди, образуя «медное зеркало».

4. Реакция восстановления альдегидами реактива Фелинга.

Реакционную смесь нагревают. При этом раствор сначала окрашивается в зеленый, а затем в желтый цвет, и наконец, выпадает оксид меди (I) красного цвета:

5. Цветная реакция на альдегиды с фуксиксернистой кислотой: наблюдается постепенное появление красно-фиолетовой окраски. Если к смеси муравьиного альдегида с фуксинсернистой кислотой прибавлять концентрированную соляную кислоту, то появляется характерная синяя окраска. В смеси изовалерианового альдегида с фуксинсернистой кислотой под влиянием соляной кислоты окраска сравнительно быстро исчезает.

Рисунок 3.4 – Качественные реакции на альдегидную группу

Как альдегиды, так и кетоны могут присоединять водород, синильную кислоту, магний-органические соединения, гидросульфит натрия.

С гидроксиламином и фенилгидразином альдегиды и кетоны реагируют с образованием оксимов и фенилгидразонов; при действии пятихлористого фосфора атом кислорода в молекулах альдегидов и кетонов замещается двумя атомами хлора.

Однако между альдегидами и кетонами имеются и существенные различия. Так, в отличие от альдегидов кетоны не окрашивают бесцветный раствор фуксинсернистой кислоты, в мягких условиях не конденсируются под действием щелочей, за редкими исключениями, и дают со спиртами ацетали только в присутствии кислот Льюиса.

Из кетонов с гидросульфитом натрия реагируют только те, которые содержат одну метильную или две метиленовые группы в непосредственном соседстве с карбонилом.

Окисляются кетоны труднее, чем альдегиды, причем при их окислении происходит разрушение молекулы, труднее для кетонов протекают и реакции конденсации.

Применение альдегидов и кетонов

Метаналь (муравьиный альдегид) CH2=O: получение фенолформальдегидных смол; получение мочевино-формальдегидных (карбамидных) смол; полиоксиметиленовые полимеры; синтез лекарственных средств (уротропин); дезинфицирующее средство; консервант биологических препаратов (благодаря способности свертывать белок).

Этаналь (уксусный альдегид, ацетальдегид) СН3СН=О: производство уксусной кислоты; органический синтез.

Ацетон СН3–СО–СН3: растворитель лаков, красок, ацетатов целлюлозы; сырье для синтеза различных органических веществ.

Как получить уксусный альдегид

Реактивы и материалы: формальдегид, 40%-ный водный раствор; сульфат меди CuSO4, 0,2 н.

Напишите реакцию окисления уксусного альдегида Cu(OH)2 раствор; едкий натр, 2 н. раствор.

В пробирку помещают 4 капли раствора едкого натра, разбавляют 4 каплями воды и добавляют 2 капли раствора сульфата меди (II).

К выпавшему осадку гидроксида меди (II) прибавляют 1 каплю раствора формальдегида и взбалтывают содержимое пробирки.

Нагревают над пламенем горелки до кипения только верхнюю часть раствора так, чтобы нижняя часть оставалась для контроля холодной.

В нагретой части пробирки выделяется желтый осадок гидроксида меди (I) (СuОН), переходящий в красный оксид меди (I) (Сu2О), а иногда на стенках пробирки выделяется даже металлическая медь.

Химизм процесса:

  • CuSO4 + 2NaOH = Cu(OH)2 + Na2SO4
  • 2Cu(OH)2 + HCOH = HCOOH + Cu2O + 2H2O

Классификация альдегидов

По строению углеводородного радикала:

— предельные;

— непредельные;

— ароматические;

— алициклические;

Альдегиды и кетоны содержат карбонильную группу ˃C=O.

Электронное строение молекул альдегидов

Атом углерода альдегидной группы находится в состоянии sp2-гибридизации, поэтому все σ-связи в этой группе располагаются в одной плоскости.

Облака р-электронов, образующих π-связь, перпендикулярны этой плоскости и легко смещаются к более электроотрицательному атому кислорода.

Поэтому двойная связь C=O (в отличие от двойной связи C=C в алкенах) сильно поляризована.

Химические свойства альдегидов и кетонов

Альдегиды — реакционноспособные соединения, вступающие в многочисленные реакции.

Химические свойства альдегидов и кетонов определяются тем, что в состав их молекул входит карбонильная группа с полярной двойной связью >C=O.

1. Высокая полярность связи С=О вызывает на карбонильном атоме углерода значительный дефицит электронной плотности (Cδ+), и по этому атому углерода возможна нуклеофильная атака. При этом, взаимодействие с нуклеофилами приводит к разрыву π-связи и образованию более прочной σ-связи.

2. Высокая полярность связи С=О вызывает на атоме углерода, соседнем с карбонильной группой (α-углеродном атоме), повышенную полярность связи С-Н α-углеродного атома. Это характеризует данные соединения как СН-кислоты.

Для альдегидов и кетонов наиболее характерны реакции, протекающие по механизму нуклеофильного присоединения (AN).

Реакционная способность в таких реакциях уменьшается от альдегидов к кетонам:

Самый активный из альдегидов – формальдегид Н2СО.

Что такое альдегиды: состав, электронная и структурная формулы

Альдегидами называют органические вещества, молекулы которых содержат функциональную группу атомов, соединенную с углеводородным радикалом.

Общая формула веществ этого класса CnH2n +1 COН или R-COН, в которой R — это атом водорода (в случае с Мурино альдегидом) или углеводородный радикал.

Группа атомов называется карбонильной группой, или карбонил.

Сравнению со спиртами в составе молекул альдегидов на два атома водорода меньше.

Это отражается в названии «альдегиды», что происходит от слов «алкоголь» и «дегидрирования», т.е. дегидрований алкоголь.

Первый член гомологического ряда альдегидов — метаналь, или формальдегид, или Мурино альдегид.

Следующий за ним — этаналь, или ацетальдегид, или уксусный альдегид.

По номенклатуре, исторически сложилась, названия альдегидов происходят от названий тех кислот, на которые они превращаются при окислении.

Например, Мурино альдегид — от Мурино кислоты, уксусный альдегид — от уксусной кислоты и т. д. По систематической номенклатуре, названия альдегидов образуют от названий соответствующих предельных углеводородов путем добавления суффикса-аль: метаналь, этаналь, пропаналя т.д..

Формальдегид СН2=О (муравьиный альдегид, метаналь).

Представляет собой бесцветное горючее вещество с острым раздражающим запахом. Растворим в воде, обычно используется в виде 33-40 % водного раствора, который называют формалином. Вырабатывают формальдегид в больших количествах.

Он применяется в производстве пластмасс. Полиформальдегид с большим молекулярным весом – ценный синтетический материал, используемый в качестве заменителя металлов. В кожевенной промышленности формальдегид применяется для дубления кожи, в медицине и санитарии – для дезинфекции.

В с/х формальдегид используется для протравливания семян перед посевом (уничтожают паразитические споры). Так как формальдегид образуется при неполном сгорании различных органических веществ, то он содержится в дыме угля, дерева; на этом основано консервирующее действие дыма при получении мясных и рыбных копченостей.

Ацетальдегид СН3—СН=О (уксусный альдегид, этаналь).

Представляет собой бесцветную легколетучую, легковоспламеняющуюся жидкость с сильным характерным запахом прелых яблок.

Хорошо растворим в воде. Используют ацетальдегид для многих промышленных синтезов. Особенно важно окисление его в уксусную кислоту, превращение в этилацетат (по реакции Тищенко); может быть восстановлен в этиловый спирт.

Ацетон СН3—СО—СН3 (диметилкетон).

Бесцветная, легковоспламеняющаяся жидкость с довольно приятным запахом. Смешивается с водой. Ацетон является ценным растворителем (в производстве лаков, искусственного шелка, взрывчатых веществ) и исходным веществом в синтезе разнообразных органических соединений.

В последнее время в технике большое значение приобрело применение ацетона для получения так называемого кетена.

Кетен – газообразное вещество, очень реакционноспособное. Применяется для получения уксусного ангидрида и ряда других ценных продуктов, в частности, очень хорошего пищевого консерванта – сорбиновой кислоты.

Применение альдегидов

Из альдегидов наибольшее применение имеет формальдегид.

Особенности применения формальдегида: используется обычно в виде водного раствора – формалина; многие способы применения формальдегида основаны на свойстве свертывать белки; в сельском хозяйстве формалин необходим для протравливания семян; формалин применяется в кожевенном производстве; формалин оказывает дубящее действие на белки кожи, делает их более твердыми, негниющими; формалин применяется также для сохранения биологических препаратов; при взаимодействии формальдегида с аммиаком получается широко известное лекарственное вещество уротропин.

Основная масса формальдегида идет на получение фенолформальдегидных пластмасс, из которых изготавливаются: а) электротехнические изделия; б) детали машин и др.

Ацетальдегид (уксусный альдегид) в больших количествах используется для производства уксусной кислоты.

Восстановлением ацетальдегида в некоторых странах получают этиловый спирт.

Получение альдегидов

1) общим способом получения альдегидов служит окисление спиртов;

2) если накалить в пламени спиртовки спираль из медной проволочки и опустить ее в пробирку со спиртом, то проволочка, которая покрывается при нагревании темным налетом оксида меди (II), в спирте становится блестящей;

3) обнаруживается также запах альдегида.

С помощью такой реакции получается формальдегид в промышленности.

Для получения формальдегида через реактор с раскаленной сеткой из меди или серебра пропускается смесь паров метилового спирта с воздухом;

4) при лабораторном получении альдегидов для окисления спиртов могут быть использованы и другие окислители, например перманганат калия;

5) при образовании альдегида спирт, или алкоголь, подвергается дегидрированию.

Особенности реакции гидратации ацетилена:

а) сначала идет присоединение воды к ацетилену по месту одной π-связи;

б) образуется виниловый спирт;

в) непредельные спирты, в которых гидроксильная группа находится у атома углерода, который связан двойной связью, неустойчивы и легко изомеризуются;

г) виниловый спирт превращается в альдегид:

д) реакция легко осуществляется, если пропускать ацетилен в нагретую воду, которая содержит серную кислоту и оксид ртути (II);

е) через несколько минут в приемнике можно обнаружить раствор альдегида.

В последние годы разработан и получает распространение способ получения ацетальдегида окислением этилена кислородом в присутствии хлоридов палладия и меди.

Свойства альдегидов

В химическом отношении это высоко реакционноспособные вещества, что обусловлено наличием в их молекуле карбонильной группы.

Высокая реакционная способность альдегидов объясняется:

а) наличием поляризованной двойной связи

б) дипольным моментом карбонила

в) наличием частичного положительного заряда на атоме углерода карбонила

Двойная связь между С и О, в отличие от двойной связи между двумя углеродами, сильно поляризована, так как кислород обладает значительно большей электроотрицательностью, чем углерод, и электронная плотность π-связи смещается к кислороду.

Такая высокая поляризация определяет электрофильные свойства углерода карбонильной группы и его способность реагировать с нуклеофильными соединениями (вступать в реакции нуклеофильного присоединения). Кислород группы обладает нуклеофильными свойствами.

Характерны реакции окисления и нуклеофильного присоединения.

Аминокислоты: что это?

Аминокислоты — органические бифункциональные соединения, в состав которых входят карбоксильные группы – СООН и аминогруппы — NH2.

Простейший представитель — аминоуксусная кислота H2N-CH2-COOH (глицин)

Некоторые представители аминокислот:

  • 1) аминоуксусная кислота Н2N-СН2-СООН;
  • 2) аминопропионовая кислота Н2N-СН2-СН2-СООН;
  • 3) аминомасляная кислота Н2N-СН2-СН2-СН2-СООН;
  • 4) аминовалериановая кислота Н2N-(СН2)4-СООН;
  • 5) аминокапроновая кислота Н2N-(СН2)5-СООН.

Чем больше атомов углерода в молекуле аминокислоты, тем больше может существовать изомеров с различным положением аминогруппы по отношению к карбоксильной группе.

6. Чтобы в названии изомеров можно было указывать положение группы – NH2 по отношению к карбоксилу, атомы углерода в молекуле аминокислоты обозначаются последовательно буквами греческого алфавита: а) ?-аминокапроновая кислота; б) ?-аминокапроновая кислота.

Получение аминокислот

Аминокислоты получают различными методами, нек-рые из них предназначены специально для получения тех или иных А.

Наиболее распространенными общими методами химического синтеза А. являются следующие.

1. Аминирование галоидопроизводных органических кислот. На галоидопроизводное (обычно бромзамещенную кислоту) действуют аммиаком, в результате чего галоид замещается на аминогруппу.

Получение А. из альдегидов путем обработки их аммиаком и цианистым водородом или цианидами. В результате такой обработки получается циангидрин, к-рый далее аминируется, образуя аминонитрил; омыление последнего дает А.

3. Конденсация альдегидов с производными глицина с последующим восстановлением и гидролизом.

Отдельные А. могут быть получены из гидролизатов белков в виде труднорастворимых солей или других производных. Напр., цистин и тирозин легко осаждаются в изо электрической точке; диаминокислоты осаждают в виде солей фосфорно-вольфрамовой, пикриновой (лизин), флавпановой (аргинин) и других кислот; дикарбоновые А.

осаждают в виде кальциевых или бариевых солей, глутаминовая к-та выделяется в виде гидрохлорида в кислой среде, аспарагиновая к-та — в виде медной соли и т. д. Для препаративного выделения ряда А. из гидролизатов белка применяют также методы хроматографии и электрофореза.

Для промышленных целей многие А. получают методами микробиологического синтеза, выделяя их из культуральной среды определенных штаммов бактерий.

Свойства аминокислот

Для любого спортсмена важны не только тренировки, но и теоретическая подкованность, благодаря которой можно получать высокие результаты тренировок.

Для этого стоит знать свойства аминокислот, ведь этот вид спортивного питания является одним из наиболее востребованных.

cyber
Оцените автора
CyberLesson | Быстро освоить программирование Pascal и C++. Решение задач Pascal и C++
Добавить комментарий