Космологические модели Вселенной: кратко

Космологические модели Вселенной

Если бы вся Вселенная обратилась в одно государство, то как не установить повсюду одинаковых законов. Козьма Прутков

Таким образом, сейчас Метагалактика расширяется, а что будет с ней в будущем? Теория А. А. Фридмана допускает здесь различные возможности в зависимости от средней плотности материи во Вселенной.

При этом в зависимости от значения средней плотности вещества во Вселенной расширение может происходить неограниченно во времени или же со временем расширение сменится сжатием. Эта зависимость определяется значением критической плотности, рассчитанной из теории Фридмана и равной

Если р > р , то расширение Вселенной со временем сменится сжатием.

При этом геометрические свойства пространства определяются сферической геометрией Римана. Эта модель получила название закрытой (замкнутой) модели Вселенной.

Если р = р , то геометрия Вселенной евклидова и расширение будет происходить неограниченно; такая модель получила название стационарной модели Вселенной.

Если р < р , то геометрия Вселенной аналогична геометрии на поверхности Лобачевского, расширение не ограничено во времени.

Модели Вселенной с р < ркр получили название открытой модели Вселенной.

Внегалактическая астрономия дает среднее значение для

постоянной Хаббла, равной ; следовательно, ркр =

= 510-30 г/см3.

Подсчеты галактик показывают, что в Метагалактике их около 1011.

Если принять, что масса каждой из них такая же, как и у нашей Галактики, то при размере Метагалактики около 600 Мпк средняя плотность вещества в ней 5 • 10-31 г/см3.

Так как это значение плотности на порядок меньше критического, то модель нашей Вселенной описывается геометрией пространства отрицательной кривизны, и наблюдаемое ее расширение будет носить неограниченный характер.

При оценке средней плотности вещества в нашей Вселенной учитывалась только наблюдаемая (излучающая) масса вещества. В настоящее время обсуждается вопрос о существовании невидимой массы, или скрытой массы вещества, которую трудно обнаружить по ее излучению.

Эта масса, возможно, сосредоточена в форме маломассивных звезд малой светимости, в черных дырах или в форме нейтрино.

Учет этой невидимой массы может увеличить значение средней плотности вещества во Вселенной.

Но является ли теория расширяющейся Вселенной окончательным словом науки, исключающим любые другие космологические модели?

«Моделям однородной Вселенной, — пишут ученые В. А. Амбарцумян и В. В. Казютинский, — противостоит реальная Вселенная, фундаментальным свойством которой является неоднородность распределения вещества. Пренебрегать этим фактом нельзя. Отсюда следует, что модели Вселенной, построенные на столь грубом упрощении, как предположение об однородном распределении вещества, едва ли стоит фетишизировать».

Ни одна частная наука, например астрономия, не знает достоверно, каков мир в целом.

Только основываясь на достижениях всех наук, можно по этому вопросу высказывать лишь более или менее правдоподобные предположения. Понятия неисчерпаемости и бесконечности материи меняются с развитием науки. В настоящее время многие ученые склоняются в пользу идеи о множественности миров с разными фундаментальными постоянными и типами пространств и времен.

Космологические модели Вселенной: выводы

  • 1. Космологическими проблемами вынуждали заниматься возникшие парадоксы — фотометрический, гравитационный и термодинамический, которые были разрешены в модели расширяющейся Вселенной. Расширение Вселенной было установлено Э. Хабблом, сравнивая скорости разбегания, измеренные по красному смещению в спектрах галактик расстояния до них.
  • 2. Эйнштейн при работе над общей теорией относительности не знал о красном смещении в спектрах и расширении Метагалактики, поэтому исходил из идеи о стационарной Вселенной. Уравнения, полученные Эйнштейном, были детально исследованы де Ситтером и Фридманом. Последний нашел три модели развития Вселенной, определяемые средней плотностью вещества в ней.
  • 3. Леметр связал эти модели с данными астрономических наблюдений и пришел к проблеме «начала» из точки, а также первоначальных условий, в которой находилась Вселенная. Эти условия характеризуются наличием высокой температуры и давления в сингулярности, в которой была сосредоточена материя. Их называют Большим взрывом. Такое допущение вполне согласуется с установлением расширения Вселенной, которое могло начаться с некоторого момента, когда она находилась в очень горячем состоянии и постепенно охлаждалась по мере расширения.
  • 4. Гамов разработал модель горячей Вселенной, которую назвал космологией Большого взрыва. Теория получила подтверждение после открытия фонового излучения, которое осталось со времени Большого взрыва и названо реликтовым. Так была повержена теория стационарной Вселенной, разрабатываемая Ф. Хойлом.
  • 5. По мере расширения и охлаждения во Вселенной происходили процессы разрушения существовавших раньше симметрий и возникновения на этой основе новых структур.
  • 6. Гут и Линде разработали разные варианты первых долей секунды после «начала», называемые моделями инфляционной, или раздувающейся, Вселенной.
  • 7. Дальнейшее развитие Вселенной разделяют на четыре эры: адронную, лептонную, излучения и вещества. В адронную и лептонную эру, продолжавшуюся 10 с, температура Вселенной после взрыва упала до б млрд градусов и образовался основной химический состав вещества Вселенной, состоящий из 75% водорода и 25% гелия.

На стадии излучения происходило непрерывное превращение вещества в излучение и, наоборот, излучения в вещество. Вследствие этого между веществом и излучением сохранялась симметрия.

Современные космологические модели Вселенной

В классической науке существовала так называемая теория стационарного состояния Вселенной, согласно которой Вселенная всегда была почти такой же, как сейчас.

Астрономия была статичной: изучались движения планет и комет, описывались звезды, создавались их классификации, что было, конечно, очень важно. Но вопрос об эволюции Вселенной не ставился.

Классическая ньютоновская космология явно или неявно принимала следующие постулаты:

  1. · Вселенная — это всесуществующая, «мир в целом». Космология познает мир таким, как он существует сам по себе, безотносительно к условиям познания.
  2. · Пространство и время Вселенной абсолютны, они не зависят от материальных объектов и процессов.
  3. · Пространство и время метрически бесконечны.
  4. · Пространство и время однородны и изотропны.
  5. · Вселенная стационарна, не претерпевает эволюции. Изменяться могут конкретные космические системы, но не мир в целом.

Современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной.

Ее свойства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами. Современная релятивистская космология строит модели Вселенной, отталкиваясь от основного уравнения тяготения, введенного А. Эйнштейном в общей теории относительности.

Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной. Первая модель была разработана самим Л. Эйнштейном в 1917 г. Он отбросил постулаты ньютоновской космологии об абсолютности и бесконечности пространства и времени.

В соответствии с космологической моде лью Вселенной А. Эйнштейна мировое пространство однородно и изотропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсальным космологическим отталкиванием.

Эта модель казалась в то время вполне удовлетворительной, поскольку она согласовывалась со всеми известными фактами.

Но новые идеи, выдвинутые А. Эйнштейном, стимулировали дальнейшее исследование, и вскоре подход к проблеме решительно изменился.

В том же 1917 г. голландский астроном В. де Ситтер предложил другую модель, представляющую собой также решение уравнений тяготения. Это решение имело то свойство, что оно существовало бы даже в случае «пустой» Вселенной, свободной oт материи. Если же в такой Вселенной появлялись массы, то решение переставало быть стационарным: возникало некоторого рода космическое отталкивание между массами, стремящееся удалить их друг от друга и растворить всю систему.

Тенденция к расширению, по В. де Ситтеру, становилась заметной лишь на очень больших расстояниях.

В 1922 г. российский математик и геофизик Л. А. Фридман о (бросил постулат классической космологии о стационарности Вселенной и дал принятое в настоящее время решение космологической проблемы.

Решение уравнений А. А. Фридмана, допускает три возможности. Если средняя плотность вещества и излучения во Вселенной равна некоторой критической величине, мировое пространство оказывается евклидовым и Вселенная неограниченно расширяется от первоначального точечного состояния.

Если плотность меньше критической, пространство обладает геометрией Лобачевского и так же неограниченно расширяется. И, наконец, если плотность больше критической, пространство Вселенной оказывается римановым, расширение на некотором этапе сменяется сжатием, которое продолжается вплоть до первоначального точечного состояния.

По современным данным, средняя плотность материи во Вселенной меньше критической, так что более вероятной считается модель Лобачевского, т.

е. пространственно бесконечная расширяющаяся Вселенная. Не исключено, что некоторые виды материи, которые имеют большое значение для величины средней плотности, пока остаются неучтенными. В связи с этим делать окончательные выводы о конечности или бесконечности Вселенной пока преждевременно.

Расширение Вселенной считается научно установленным фактом. Первым к поискам данных о движении спиральных галактик обратился В. де Ситтер. Обнаружение эффекта Доплера, свидетельствовавшего об удалении галактик, дало толчок дальнейшим теоретическим исследованиям и новым улучшенным измерениям расстояний и скоростей спиральных туманностей.

В 1929 г. американский астроном Э. П. Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию,— система галактик расширяется.

Но то, что в настоящее время Вселенная расширяется, еще не позволяет однозначно решить вопрос в пользу той или иной модели.

В классической науке существовала теория стационарного состояния Вселенной, согласно которой Вселенная всегда была почти такой же, как сейчас.

Астрономия была статичной: изучалось движение планет и комет, описывались звезды, создавалась их классификация, что было, конечно очень важно. Но вопрос об эволюции Вселенной не ставился. Согласно классической космологии Ньютона, пространство и время однородны и изотропны, абсолютны и бесконечны.

Вселенная стационарна, изменяться могут конкретные космические системы, но не мир в целом.

Однако признание бесконечности Вселенной приводило к двум парадоксам: гравитационным и фотометрическим. Суть гравитационного парадокса заключается в том, что если Вселенная бесконечна и в ней существует бесконечное количество небесных тел, то сила тяготения будет бесконечно большая, и Вселенная должна сколлапсировать, а не существовать вечно.

Фотометрический парадокс: если существует бесконечное количество звезд, и они распределены в пространстве равномерно, то должна быть бесконечная светимость неба.

На этом фоне даже Солнце, казалось бы, черным пятном, но этого нет.

Эти космологические парадоксы оставались неразрешимыми до двадцатых годов ХХ века, когда на смену классической космологии пришла релятивистская. До этого времени наука не располагала теоретически осмысленными астрономическими данными, свидетельствующими о крупномасштабной эволюции вещества. После открытия явления естественной радиоактивности стала неизбежной мысль о нестабильности космической материи вообще, изменчивости химического состава Вселенной в особенности.

Первая релятивистская космологическая модель Вселенной была разработана А. Эйнштейном в 1917 году. Она основывалась на уравнении тяготения, введенного Эйнштейном в общей теории относительности.

В соответствии с представлениями классической астрономии о стационарности Вселенной, он исходил из предположения о неизменности свойств Вселенной, как целого во времени (радиус кривизны пространства он считал постоянным).

Эйнштейн даже видоизменил общую теорию относительности, чтобы она удовлетворяла этому требованию, и ввел дополнительную космическую силу отталкивания, которая должна уравновесить взаимное притяжение звезд. Модель Эйнштейна носила стационарный характер, поскольку метрика пространства рассматривалась как независимая от времени.

Время существования Вселенной бесконечно, т.е. оно не имело ни начала, ни конца, а пространство было безгранично, но конечно.

В 1922 году российский математик и геофизик А.А. Фридман предположил нестационарное решение уравнением тяготения Эйнштейна, где метрика рассматривалась как меняющаяся со временем. Он доказывал, что Вселенная не может быть стационарной, она должна либо расширяться, либо сжиматься. А.

Эйнштейн сначала отрицательно отнесся к работам Фридмана, однако вскоре признал ошибочность своей критики.

Модели Вселенной А.А. Фридмана вскоре получили подтверждение в наблюдениях движений далеких галактик – в эффекте «красного смещения», открытом в 1929 году американским астрономом Э. Хабблом.

Хаббл обнаружил, что в спектрах далеких галактик спектральные линии смещены к красному концу. Обнаруженный ранее эффект Доплера гласил, что при удалении от нас какого-либо источника колебаний, воспринимаемая нами частота колебаний уменьшается, а длина волны соответственно увеличивается.

При излучении света происходит «покраснение», т.е. линии спектра сдвигаются в сторону более длинных красных волн. Если обнаруженное Хабблом красное смещение понимать как результат эффекта Доплера, то это означает, что галактики «удаляются» от нас со скоростью, линейно зависящей от расстояния. В настоящее время, уже зарегистрированы скорости удаления, порядка 100000 км/сек для наиболее далеких из наблюдаемых галактик.

Разбегание галактик не следует представлять себе как некое обычное движение в не изменяющемся со временем пространстве.

Это не движение объектов в неизмененном пространстве, а эффект, обусловленный новыми свойствами самого пространства – нестабильностью его материи. Итак, ни галактики расходятся в остающемся постоянном пространстве, а само пространство расширяется (меняется его метрика) с течением времени. Для большей ясности можно привести двухмерную модель, наглядно иллюстрирующую фридмановское расширение.

Возьмем резиновую сферу и будем ее надувать. Тогда все точки на поверхности будут удаляться друг от друга, причем из любой точки все остальные будут выглядеть разбегающимися. Таким образом, то обстоятельство, что от данной точки все остальные удаляются, отнюдь, не свидетельствует о каком-то центральном, привилегированном положении этой точки.

Подавляющее большинство современных космологических теорий представляет собой модели эволюционирующей Вселенной.

Наиболее обоснованной среди них, считается опирающаяся на идеи Фридмана модель горячего Большого взрыва, которую еще называют стандартной, по причине ее практически всеобщего признания в научной среде.

Согласно этой гипотезе наша Вселенная (Метагалактика) 15-20 млрд лет назад возникла в результате космического Большого взрыва, которому предшествовало так называемое «сингулярное» (особое) состояние, когда материя видимой Вселенной была «стянута в точку», находясь в сверхплотном состоянии.

Теоретические расчеты показывают, что в первоначальном, сингулярном, т.е. сверхплотном, состоянии плотность вещества Вселенной составила 1091 г/см3, а радиус был 10-12см, что близко к классическому радиусу электрона. Но представление о сингулярном состоянии как «стянутой в точку» материи с бесконечными значениями физических величин является, конечно, идеализацией, поскольку наука не располагает средствами установить размеры (радиус) видимой Вселенной в ее исходном сверхплотном состоянии.

От первоначального сингулярного состояния Вселенная перешла к расширению в результате Большого взрыва, заполнившего все пространство.

В итоге каждая частица материи устремилась прочь от любой другой. Всего лишь через одну сотую секунды после взрыва Вселенная имела температуру 100000 млн. градусов по Кельвину. При такой температуре (выше температуры центра самой горячей звезды) молекулы, атома и даже ядра атомов существовать не могут. Вещество Вселенной пребывало в виде элементарных частиц, среди которых преобладали электроны, позитроны, нейтрино, фотоны, а также в относительно малом количестве протоны и нейтроны.

Плотность вещества Вселенной спустя 0,01 с после взрыва была огромной – в 4000 млн раз больше, чем у воды. В конце первых трех минут после взрыва температура вещества Вселенной, непрерывно снижаясь, достигла 1 млрд градусов.

При этой температуре начали образовываться ядра атомов, в частности, ядра тяжелого водорода и гелия. Однако вещество Вселенной в конце первых трех минут состояло в основном из фотонов, нейтрино и антинейтрино. Только по истечении нескольких сотен тысяч лет начали образовываться атомы, главным образом водорода и гелия, образовавшие водородно-гелиевую плазму.

Существование Вселенной в качестве водородно-гелиевой плазмы подтверждается данными астрономии.

В 1965 году было обнаружено так называемое «реликтовое» радиоизлучение Вселенной, представляющее собой излучение горячей плазмы, сохранившееся с того времени, когда звезд и галактик не было.

В рамках модели Фридмана вопросы о конечности и бесконечности пространства и времени в определенном смысле становятся эмпирически верифицируемыми.

Нестационарный мир Фридмана, вообще говоря, может иметь положительную кривизну(закрытая модель) и отрицательную кривизну(открытая модель), он может иметь одну особую временную точку— начало времени (расширяющаяся Вселенная).

Но он может иметь и бесконечно много особых точек. В этом случае ни одна из них не может считаться за начало времени, а их наличие просто означает, что во Вселенной периоды расширения сменяются периодами сжатия, когда галактики «сжимаются» (красное смещение сменяется фиолетовым), плотность вновь принимает бесконечное значение, а затем вновь начинает расширяться (пульсирующая Вселенная).

Выбор между перечисленными возможностями зависит от величины средней плотности вещества и полей во Вселенной.

Будущее нашего мира зависит от соотношения между скоростью разбиения галактик и силы, с которой они друг друга притягивают. Сила притяжения определяется средней плотностью вещества во Вселенной, а она известна приблизительно.

В релятивистской космологии принято, что существует критическая величина средней плотности, равная приблизительно 10-29 г/см3, т.е. 10 атомов водорода в одном м3.

cyber
Оцените автора
CyberLesson | Быстро освоить программирование Pascal и C++. Решение задач Pascal и C++
Добавить комментарий